• Title/Summary/Keyword: joystick

Search Result 166, Processing Time 0.026 seconds

Pacman Game Using Hand Motion Recognition (손동작 인식에 의한 Pacman 게임)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.329-330
    • /
    • 2010
  • Classic game Pac-Man (Pacman) is playing a game using a somple hand gasture without using a keyboard or a mouse. In other words, it is a joystick game by motion to replace the arrow keys using the center coordinates of the hand. In addition, the pointer of hand is extracted by accepting images to MFC dialog using cam. Thus, movements of the monsters is to be replaced by hand movements. In this paper, smoothing, expansion, and erosion operation for the skin color extraction, and RGB images are converted to YCbCbr images.

  • PDF

Control of a Mobile Robot Based on a Tangible Interface using iPhone (아이폰을 이용한 체감형 인터페이스 기반 이동 로봇 제어)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • In the study, a tangible interface using iPhone is proposed to control a mobile robot, instead of remote control by a joystick or buttons. The robot is controlled by iPhone like a handle bar, since acceleration sensors of iPhone are used in the proposed method. The sensors measure the angles changed on the xyz coordinates of iPhone. And their sensor values are stabilized by digital filters. Bluetooth is chosen for communication between a mobile robot and iPhone. In this paper, four type methods are considered and one of the methods is selected for remote control of a mobile robot. Experimental results show that the robot is easily and conveniently controled by the tangible interface based on iPhone.

Development of Head Mounted Display Interface System for Controlling Wireless Capsule Endoscope (무선 캡슐내시경 조종을 위한 머리부착형 디스플레이 인터페이스 시스템의 개발)

  • Young-Eun, Hwang;Young-Don, Son
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.417-423
    • /
    • 2022
  • The present study proposed a new interface system for capsule endoscopy by using head mounted display (HMD) device, which can control the orientation of the capsule endoscope with electromagnetic actuator (EMA) system. The orientation information of the HMD user was detected by the gyroscope sensor built into the device and then calculated to as an angle increment using Unity Engine compiler. The measured angle changes from the HMD were converted to the current values of the corresponding coils to be changed in the EMA system. Two experiments were designed to measure the accuracy and the intuitiveness of the HMD interface system. In the angle accuracy measurement, the capsule endoscope driven by HMD interface system showed the averaged errors of 0.68 degrees horizontally and 1.001 degrees vertically for given test angles. In the intuitiveness measurement, HMD interface system showed 1.33 times faster manipulation speed rather than the joystick interface system. In this respect, the HMD interface system for capsule endoscopy was expected to improve the overall diagnostic environment while maintaining comfort of patients and clinicians.

Development and performance evaluation of Machine Control Kit mountable to general excavators (일반 굴삭기 장착 가능한 머신 컨트롤 키트 개발 및 성능 평가)

  • K.S. Lee;K.S. Kim;J.B. Jeong;E.S. Pak;J.I. Koh;J.J. Park;S.H. Joo
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, to prevent accidents in underground facilities during excavation, we developed a Lv.3 automated control system that can be configured as an electronic control system without changing the existing hydraulic system in a general excavator and utilized digital map information of underground facilities. We aimed to develop a strategy to prevent accidents caused by operator error. To implement this, a real-time excavator bucket end position recognition and control system was developed through angle measurement of the boom, arm, and bucket using an electronic joystick, RTK-GPS, and angle sensors. In addition, excavators are large, machine-based equipment, and it is difficult to control overshoot due to inertia with feedback control using position recognition information of the bucket tip. Therefore, feed-forward control is used to calculate the moving speed of the bucket tip in real-time to determine the target position. We developed a technology that can converge and verified the performance of the developed system through actual vehicle installation and field tests.

Evaluation and Analysis of Mouse and Wiimote Interaction According to Display Sizes (디스플레이 크기에 따른 마우스와 위모트 인터랙션 평가와 분석)

  • Kim, Min-Young;Moon, Hyung-Tae;Cho, Yong-Joo;Park, Kyoung-Shin
    • Journal of Korea Game Society
    • /
    • v.10 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • Recently there are various innovative user interfaces such as a wireless motion controller Wiimote appeared to give a new user experience which is different from the traditional devices like a joystick, mouse, or keyboard. With the advent of technologies, display devices become larger and larger in screen size and offer high-resolutions, and tiled display systems are also used in various applications. Although there are some efforts on investigating new interfaces developed for the large screen, there are a few studies conducted on user interaction on large displays such as tiled display. In this paper, we present a study evaluating and analyzing the effects of mouse or Wiimote user interactions on four different kinds of displays with various sizes and resolutions.

Sound-driven Vibration System using Digital Signal Processor (DSP를 이용한 사운드 기반 진동 시스템)

  • Cho, Dong-Hyun;Oh, Sung-Jin;You, Yong-Hee;Sung, Mee-Young;Jun, Kyung-Koo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.553-558
    • /
    • 2008
  • In this paper, we develop a vibration system which can generate diverse vibration effects in realtime by analyzing signals from the sound output of PC. This system is able to detect the occurrences of particular sounds in order to generate corresponding pre-programmed vibration patterns. It contributes to the improvement of the reality and the immersiveness of games and virtual reality applications. In addition, its advantage is to easily add vibration features to applications which were originally developed without consideration for vibration. Our system consists of an external DSP board for signal processing and a vibration pad which can be put on wrists. It is superior to other sound-driven vibration devices because its DSP board can detect more diverse sounds, has higher performance and does not interfere with PC. Also the wrist-wearable vibration pad is able to generate more realistic vibration than other mouse or joystick type devices.

  • PDF

A study on development of a dual driven ship berthing/deberthing system using magnetic gear (마그네틱 기어를 이용한 듀얼 구동식 선박 접이안 시스템 개발에 관한 연구)

  • Kang, Min-Su;Kim, Byong-Kuk;Kim, Hyen-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.98-99
    • /
    • 2016
  • The aim of study is to develop a dual driven ship berthing/deberthing system with $360^{\circ}$ steerability. A large ship used bow thruster, side thruster and pod propulsor etc. when approaching to a pier. But as marine leisure boats become large-scaled, the number of accidents is recently increasing what caused a ship to crash into a ship and a ship to crash into mooring facilities during berthing/deberthing on a marina. To solve the problem, the control responsiveness of a joystick connected with two motors and a propeller was checked and torque was increased by the electromagnetic design of magnetic gear. A sea trial test was carried out to investigate a performance of the developed system in the real sea.

  • PDF

Teleoperation Using Reconstructed Graphic Model (재구성된 그래픽 모델을 이용한 원격제어)

  • Chung, Seong-Youb;Yoon, Hyun-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3876-3881
    • /
    • 2012
  • In typical master/slave teleoperation systems, a human operator generally manipulates the master to control the slave through the visual information like camera image. However, the operator may get into trouble due to the limited visual information depending on the camera positions and the delay on the visual information because of low communication bandwidth. To cope with this inherit problem in the camera-based teleoperation system, this paper presents a teleoperation system using a reconstructed graphic model instead of the camera image. The proposed teleoperation system consists of a robot control module, a master module using a force-reflective joystick, and a graphic user interface (GUI) module. The graphic user interface module provides the operator with a 3D model reconstructed using a small set of sensing data received from the remote site. The proposed teleoperation system is evaluated through a peg-in-hole assembly task.

A Study on the Mutual Coexistence between Virtual Reality Bluetooth Devices and WLAN on the Monte-Carlo (몬테카를로 기반의 가상현실 블루투스 기기와 무선랜 사이의 상호 공존 연구)

  • Yun, Hye-Ju;Yu, Chul-Hee;Kim, Byung-Duk;Jo, Young-Do
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.33-38
    • /
    • 2016
  • As a communications system and using the wireless devices is increased at the world, the interference among devices at 2.4GHz band become issue. New complex content technology as education, concert, broadcast, thema-park are developed between Virtual Reality technology and tradition. That is expect an annual growth rate of more than 14%. Almost Virtual Reality devices use motion sense or a wireless joystick. Therefore it is necessarily to analyze the coexistence between Virtual Reality devices and Wi-Fi in the ISM band. The interference scenario and propagation of the Extended Hata Model was established to analyze the interference from WLAN into Virtual Reality devices. Through simulation results based on Monte-Carlo principle, separation frequency was obtained to protect WLAN interference from Virtual Reality devices.

Tactile Navigation System using a Haptic Device (햅틱 디바이스를 이용한 촉감형 네비게이션 시스템)

  • Lee, Dong-Hyuk;Noh, Kyung-Wook;Kang, Sun Kyun;Kim, Hyun Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.807-814
    • /
    • 2014
  • In this paper, we proposed a haptic navigation system which used the tactile data for the user guides of the mobile robot to the reference point via tele-operation in unknown blind environment. This navigation system can enable a mobile robot to avoid obstacles and move to the reference point, according to the direction provided by the device guides through a haptic device consisting of a vibration motor in a blind environment. There are a great deal of obstacles in real environments, and so mobile robots can avoid obstacles by recognizing the exact position of each obstacle through the superposition of an ultrasonic sensor. The navigation system determines the direction of obstacle avoidance through an avoidance algorithm that uses virtual impedance, and lets users know the position of obstacles and the direction of the avoidance through the haptic device consisting of 5 vibration motors. By letting users know intuitionally, it lets the mobile robot precisely reach the reference point in unknown blind environment. This haptic device can implement a haptic navigation system through the tactile sensor data.