• Title/Summary/Keyword: joystick

Search Result 166, Processing Time 0.026 seconds

Development of Automatic Polishing Robot System and Integrated Operating Program (자동 연마 로봇 시스템의 개발 및 통합 구동 환경 구축)

  • 이민철;정진영;고석조;허창훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2003
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, an automatic polishing robot system was developed. The polishing robot system is composed of two subsystems, a three-axis machining center and a two-axis polishing head. The machining center is controlled by a FANUC controller, and the polishing head by DSP controller. The system has five degrees of freedom and is able to keep the polishing tool normal to the die surface during operation. To easily operate the developed polishing robot system, this study developed an integrated operating program in the Windows environment. The program consists of five modules: a polishing data generation module, a code separation module, a polishing module, a graphic simulator module, and a teaching module. And, the automatic teaching system was developed to easily obtain teaching data and it consists of a three dimensional joystick and a proximity sensor. Also, to evaluate the performance of the integrated operating program and the polishing robot system, polishing experiments of a die of shadow mask were carried out.

Force Control of 6-DOF Pneumatic Joystick

  • Tanaka, Yoshito;Hitaka, Yasunobu;Yun, So-Nam;Kim, Ji-U;Jeong, Eun-A;Park, Jung-Ho;Ham, Young-Bog
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, it is presented the development of a new type force feedback system. It is based on a 6-DOF Stewart parallel mechanism which has six pneumatic actuated cylinders. The thrust force of each cylinder is controlled by PWM control for the solenoid valve and it is actualized by PIC controller. When the pneumatic actuator is controlled, it must be considered the influence on the compressibility of air. For this problem, we guarantee the control characteristics by the effect of the accumulator. It is confirmed that the thrust force of the cylinder can be applied to the pneumatic parallel mechanism, and is presented the experimental result of force control for vertical direction.

Development of a Pneumatically Driven 6 DOF Driving Simulator (공기압 구동식 6 DOF 드라이빙 시뮬레이터의 개발)

  • Kim, Geun-Mook;Kang, E-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6090-6097
    • /
    • 2013
  • A pneumatically-driven driving simulator that provides a realistic representation of the driving environment was developed. The motion platform for the driving simulator is a mechatronic device that gives a driver the realistic feeling of an actual vehicle. The cost of the motion platform comprises the largest part of the expenses in developing a driving simulator. In this project, to develop a low-cost motion platform, the self-built motion platform based on the Stewart platform configuration that is constructed by six pneumatic cylinders was used as its actuator. The Stewart platform that moves in response to the operating signals of the joystick showed satisfactory tracking performance. We confirmed the possibility of the driving simulator using rFactor that is a commercially available racing game software.

Development of universal controller module using electromyogram signal (근전도 신호를 이용한 범용제어기 모듈)

  • Lee, Chung-Heon;Yu, Jae-Jun;Bae, Sung-Ho;Kang, Sung-Chul;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.478-480
    • /
    • 2011
  • As the recent games industry grows slowly, the consumers come to have interests in new types of games which has different types from the conventional games. While the conventional games play with a simple interfaces such as a joystick and buttons, the new games are designed to have acceleration sensors, infrared sensors and video motion detection sensing using several types of sensors and allow users to play more actively. In this paper, we propose a method which uses the electromyogram(EMG) signals in interface.

  • PDF

Development of Web-cam Game using Hand and Face Skin Color (손과 얼굴의 피부색을 이용한 웹캠 게임 개발)

  • Oh, Chi-Min;Aurrahman, Dhi;Islam, Md. Zahidul;Kim, Hyung-Gwan;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.60-63
    • /
    • 2008
  • The sony Eytoy is developed on Playstation 2 using webcam for detecting human. A user see his appearance in television and become real gamer in the game. It is very different interface compared with ordinary video game which uses joystick. Although Eyetoy already was made for commercial products but the interface method still is interesting and can be added with many techniques like gesture recognition. In this paper, we have developed game interface with image processing for human hand and face detection and with game graphic module. And we realize one example game for busting balloons and demonstrated the game interface abilities. We will open this project for other developers and will be developed very much.

  • PDF

Master Arm and Control System for Teleoperated Bolting Robot (원격 제어되는 볼팅 로봇을 위한 마스터암과 제어 시스템)

  • Lee, Sang Woo;Park, Jang Woo;Park, Shin Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.185-193
    • /
    • 2013
  • The construction automation provides safer and more productive working environment of construction site. We developed the automation system of bolting operation for high-rise building in the previous research. However, this system has a weak point that the operation has to be processed in the air with the operator in the cabin. This weakness leads operators to considerably dangerous environment. Therefore, we proposed the tele-operation system in order to supplement this weak point. Furthermore, it leads more effective operation by application of more intuitive controller; spherical coordinate based Master Arm than the joystick in the Mobile Bolting Robot system. These proposed system and controller were evaluated based on Fitts' law paradigm, which is a general estimation method of speed accuracy of task. Through the experimental results, new developed tele-operation system is compared with the actual operation and it discloses distinctions between two systems. As a result, it is found that new developed teleoperation system can be possible to replace the operation in the cabin.

Control of an Omni-directional Electric Board using Driver Weight Shift (운전자 체중 이동을 이용한 전방향 전동 보드의 제어)

  • Choi, Yong Joon;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.149-155
    • /
    • 2016
  • This paper presents a control method of a mecanum wheel-based omni-directional electric board using driver weight shift. Instead of a steering device such as a joystick or a remote controller, 3 degree-of-freedom driving command for translational and rotational motion of the omni-directional electric board is generated from position of center of gravity measured from weight distribution. The weight shifting motion is not only a driving command but also an intuitive motion to overcome inertial forces. The overall control structure is presented with experimental results to prove validity of the proposed method.

User-friendly Automatic Polishing Robot System and Its Integrated Operating Program

  • Lee, Min-Cheol;Jung, Jin-Young;Go, Seok-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Polishing a die that has free-form surfaces is a time-consuming and tedious job, and requires a considerable amount of high-precision skill. In order to reduce the polishing time and cope with the shortage of skilled workers, an automatic polishing robot system was developed. The polishing robot system is composed of two subsystems, a three-axis machining center and a two-axis polishing head. The machining center is controlled by a FANUC controller, and the polishing head by DSP controller. The system has five degrees of freedom and is able to keep the polishing tool normal to the die surface during operation. To easily operate the developed polishing robot system, this study developed an integrated operating program in the Windows environment. The program consists of five modules: a polishing data generation module, a code separation module, a polishing module, a graphic simulator module, and a teaching module. Also, the automatic teaching system was developed to easily obtain teaching data and it consists of a three dimensional joystick and a proximity sensor. Also, to evaluate the performance of the integrated operating program and the polishing robot system, polishing experiments of a die of shadow mask were carried out.

Surgical Simulation Environment for Replacement of Artificial Knee Joint (CT 영상을 이용한 무릎관절 모의 치환 시술 환경)

  • Kim, Dong-Min
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.119-126
    • /
    • 2003
  • This paper presents a methodology for constructing a surgical simulation environment for the replacement of artificial knee join using CT image data. We provide a user interface of preoperative planning system for performing complex 3-D spatial manipulation and reasoning tasks. Simple manipulation of joystick and mouse has been proved to be both intuitive and accurate for the fitness and the wear expect of joint. The proposed methodology are useful for future virtual medical system where all the components of visualization, automated model generation, and surgical simulation are integrated.

  • PDF

Human-Robot Cooperative Control for Construction Robot (건설로봇용 인간-로봇 협업 제어)

  • Lee, Seung-Yeol;Lee, Kye-Young;Lee, Sang-Heon;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.285-294
    • /
    • 2007
  • Previously, ASCI(Automation System for Curtain-wall Installation) which combined with a multi-DOF manipulator to a mini-excavator was developed and applied on construction site. As result, the operation by one operator and more intuitive operation method are proposed to improve ASCI's operation method which need one person with a remote joystick and another operating an excavator. The human-robot cooperative system can cope with various and untypical constructing environment through the real-time interacting with a human, robot and constructing environment simultaneously. The physical power of a robot system helps a human to handle heavy construction materials with relatively scaled-down load. Also, a human can feel and response the force reflected from robot end effecter acting with working environment. This paper presents the feasibility study regarding the application of the proposed human-robot cooperation control for construction robot through experiments on a 2DOF manipulator.