• Title/Summary/Keyword: joint tensile performance

Search Result 107, Processing Time 0.024 seconds

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

Effect of Process Variables on the Flash Butt Welding of High Strength Steel

  • Kim, Y.S.;Kang, M.J.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.24-28
    • /
    • 2003
  • This study was aimed to evaluate the quality of flash welded joints and optimize the welding process for flash butt welding of 780MPa grade high strength steel. And then the relationship between the welding process variables and the joint quality would be established. The effect of process variables between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with Ceq of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non­uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Investigation on the thermal butt fusion performance of the buried high density polyethylene piping in nuclear power plant

  • Kim, Jong-Sung;Oh, Young-Jin;Choi, Sun-Woong;Jang, Changheui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1142-1153
    • /
    • 2019
  • This paper presents the effect of fusion procedure on the fusion performance of the thermal butt fusion in the safety class III buried HDPE piping per various tests performed, including high speed tensile impact, free bend, blunt notched tensile, notched creep, and PENT tests. The suitability of fusion joints and qualification procedures was evaluated by comparing test results from the base material and buttfusion joints. From the notched tensile test result, it was found that the fused joints have much lower toughness than the base material. It was also identified that the notched tensile test is more desirable than the high speed tensile impact and free bend tests presented in the ASME Code Case N-755-3 as a fusion qualification test method. In addition, with regard to the single low-pressure fusion joint performances, the procedure given by the ISO 21307 was determined to be better that the one specified in the Code Case N-755-3.

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

A Study of Weldability and Welded Joint Performance on the Gas Shield Arc Welding (FCAW) of SM490TMC Steel Plate (120mm) (SM490TMC 극후판(120mm) 강재의 가스실드아크용접(FCAW)을 이용한 용접성 및 이음성능에 관한 연구)

  • Kim, Sung Bae;Hong, Hyung Ju;Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.455-465
    • /
    • 2017
  • To figure out the weldability and welded joint performance on the FCAW of SM490TMC 120mm, several specimens were manufactured and 10 kinds of experiments were implemented. The result of the weld zone chemical composition test, weld metal tensile test, weld zone tensile test, and weld zone impact test has satisfied the KS. Especially, the weld zone tensile test result shows the base metal fracture, which means the weld zone performs enough required performance. In addition, the results of the weld zone bending test, hardness test, macroscopic test, microscopic test, and the maximum hardness in HAZ were showing that the FCAW weld zone has fine quality.

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.

A study on Tensile performance of Energy Absorbing Bolts in Space Frame (스페이스프레임에 사용되는 에너지 흡수형 볼트의 인장성능연구)

  • Lee, Sung-Min;Kim, Min-Sook;Choi, Jung-Sam;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

Development of Mechanistic-empirical Joint Spacing Design Method for Concrete Pavements (역학적-경험적 콘크리트 포장 줄눈간격 설계방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.51-59
    • /
    • 2011
  • Tensile stress occurs and random crack develops in concrete pavement slab when it contracts by variation of temperature and humidity. The tensile stress decreases and the random crack is minimized by sawcutting the slab and inducing the crack with regular spacing. The random crack, joint damage, decrease of load transfer efficiency are caused by too wide joint spacing while too narrow joint spacing leads to increase of construction cost and decrease of comfort. A mechanistic-empirical joint spacing design method for the concrete pavement was developed in this study. Structurally and environmentally weakest sections were found among the sections showing good performance, and design strengths were determined by finite element analysis on the sections. The joint width for which the load transfer efficiency is suddenly lowered was determined as allowable joint with referring to existing research results. The maximum joint spacing for which the maximum tensile stress calculated by the finite element analysis did not exceed the design strength were found. And the maximum joint width expected by the maximum joint spacing were compared to the allowable joint width. The new method developed in this study was applied to two zones of Hamyang-Woolsan Expressway being designed. The same joint spacing as a test section constructed by 8.0m of joint spacing wider than usual was calculated by the design method. Very low cracking measured at 6 years after opening of the test section verified the design method developed in this study.