• Title/Summary/Keyword: joint temperature

Search Result 740, Processing Time 0.024 seconds

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Development of Cable Lug Joint Using Electromagnetic Force (전자기력을 이용한 케이블 러그 조인트 개발)

  • Shim, Ji-Yeon;Kang, Bong-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.156-161
    • /
    • 2013
  • Recently, there has been a trend in the manufacturing process to focus on the durability of cable lug joint, especially in welding process due to the poor cable lug joint causes many troubles on products and workers during manufacturing process. Therefore development of high quality cable lug joint is important for successful manufacturing process and safety of worker. The Magnetic Pulse Forming(MPF) is one of efficient way to developed a high quality cable lug joint. In MPF, a high strain rate forming process, utilizes a high velocity oblique collision on the workpiece to be formed in required shape. The objective of this paper is to develop of high quality cable lug joint using electromagnetic force. To successfully accomplish this goal, section and electrical contact temperature of developed cable lug joint has been compared with various cable lug joint. Electrical contact temperature of developed cable lug joint by electromagnetic force is lower than manufactured cable lug joint by pressurer and hydraulic pressurer.

Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints (세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포)

  • 박영철;허선철;윤두표;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Effect of Annealing on the Improvement of Strength of Butt Welded Joint (맞대기 이음용접의 강도향상을 위한 어니일링 효과에 관한 연구)

  • ;;Shin, Keun-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.2
    • /
    • pp.43-47
    • /
    • 1979
  • This paper presents the effect of stress relief annealing on mechanical properties in single Vee-groove welding joint. In this experiment, the investigation of annealing effect on mechanical properties of test material carried out by changing the annealing temperature from $600^{\circ}C$ to $900^{\circ}C$ under the given conditions. The results pbtained by this study are as follows: (1) Under the constant welding conditions, the tensile strength of test welded joint decrease in accordance with the increase of annealing temperature. The experimental results show that the reduction rate of tensile strength is about 35.09% of base metal strength. (2) Microhafdness distribution of welded joint bring about the maximum hardness near the bended line of welding joint. (3) Izod impact energy of welded joint in increase in according to the rise of annealing temperature and the peak energy of impact test occurs at $800^{\circ}C$

Optimization of Peltier Current Leads Cooled by Two-Stage Refrigerators

  • Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.94-101
    • /
    • 2006
  • A theoretical investigation to find thermodynamically optimum design conditions of conduction-cooled Peltier current leads is performed. A Peltier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high temperature superconductor (HTS) lead in the order of decreasing temperature. Mathematical expressions for the minimum heat flow per unit current crossing the TE-metal interface and the minimum heat flow per unit current from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE -metal interface possesses a unique optimal value that minimizes the heat flow to the joint and that this optimal value depends on the material properties of the TE and the metallic lead but not the joint temperature nor electric current. It is also shown that there exists a unique optimal value for the joint temperature between the metal and the HTS leads that minimizes the sum of the power dissipated by ohmic heating in the current leads and the refrigerator power consumed to cool the lead, for a given length of the HTS.

Evaluation of Environmental Fatigue Strength in Adhesive Bonding of Different Materials (이종재료 접착제 접합부의 환경 피로강도 평가)

  • 임재규;이중삼;윤호철;유성철
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.99-105
    • /
    • 2002
  • One of the important advantage of adhesive bonded joint can combine the different materials. The joint that bonded by structural adhesive bond must keep a large force and its strength is affected by some environmental factors such as temperature and submergence time in water. In order to advance the fatigue strength of adhesive bonded joint, mostly put a surface treatment on the surface. This study was researched the effect of air temperature, submergence time, submergence temperature and surface treatment on the fatigue strength. We found that submergence temperature has the most effect and low plasma treatment specimens have the most fatigue strength.

Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint

  • Li, Xiangqing;Ding, Zhenyu;Liu, Chang;Bao, Shiyi;Qian, Hao;Xie, Yongcheng;Gao, Zengliang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1732-1741
    • /
    • 2020
  • The structural integrity of welded joints in the reactor pressure vessel (RPV) is directly related to the safety of nuclear power plants. The RPV is made from SA508-III steel in a pressurized water reactor. In this study, we investigated the effects of temperature on the tensile and fracture toughness properties of Chinese SA508-III welded joint in different sampling areas in order to provide reference data for structural integrity assessments of RPVs. The specimens used in tensile and fracture toughness tests were fabricated from the base metal (BM), weld metal (WM), and the heat-affected zone (HAZ) in the welded joint. The representative testing temperatures included the ambient temperature (20 ℃), upper shelf temperature (100 ℃), and service temperature (320 ℃). The results showed that temperature greatly affected the fracture toughness (JIC) values for the SA508-III welded joint. The JIC values for BM and HAZ both decreased remarkably from 20 ℃ to 320 ℃. The fracture morphologies showed that the BM and HAZ in the welded joint exhibited fully ductile fracture at 20 ℃, whereas partial cleavage fracture was mixed in ductile fracture mode at 100 ℃ and 320 ℃. The WM exhibited the ductile and cleavage fracture mixed mode at various temperatures, and the JIC values showed slight changes.

Singular Stress Field Analysis and Strength Evaluation in Ceramic/.Metal Joints (세라믹/금속접합재의 열사이클피로에 따른 접합계면의 잔류응력분포 특성)

  • 박영철;김현수;허선철;강재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.709-713
    • /
    • 1996
  • The ceramic has such high qualities as light weight, abrasion resistance, heat resistance compared with metal, but since it is breakable, it can't be used as structural material and it is desirable to joining metal which is full of toughness, but, according as the ceramic/metal joint is executed at high temperature, the joint residual stress develops near the joint sides in the process of cooling the high temperature down to the suitable temperature due to difference of the thermal expansion coefficient between ceramic and metal, and the joint residualstress lowers the fracture strength. In this study, to ensure security and improvement of bending strength, 1 studies on see distribution shape of residual stress according to high thermal cycle, and the influnence of theraml cycle and distribution shape of residual stess on joint-strength.

  • PDF

Characteristics of Joint High Temperature Superconducting tape (High Temperature Superconducting tape(Bi-2223)의 접속시 통전특성)

  • Kim, Hae-Joon;Sim, Ki-Deok;Cho, Jeon-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.244-245
    • /
    • 2007
  • Specially, High Temperature Superconducting power-transmission cable(HTS cable), 3-phase 100m long, 22.9kV class HTS power transmission cable system have been developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. that is one of 21st century frontier project in Korea. This cable was installed in KEPCO(Go-chang) testing site. In case of manufacturing HTS cable, superconducting joint is very important because they need very long tapes. Therefore, this paper gives some investigation of AC Loss in joined HTS tape by using several joint methods. Finally, this paper was shown background data for the form of HTS cable joint.

  • PDF

The Characteristics of Rail Temperature for Track Maintenance (궤도 관리를 위한 레일 온도의 특성)

  • 구봉근;서사범
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • The rail temperature is important to preserve the joint gap for standard length of rail and to determine the installation temperature which has direct influence on the rail buckling and failure in welded part for continuous welded rail(CWR), Therefore, we have measured and investigated various characteristics of rail temperature for each kind of rail. As the results of this, the correlation between the atmosphere temperature and the rail temperature which is commonly used by Korean Railway should be reconsidered. Also, the daily highest '||'&'||' lowest rail temperature was occurred when each temperature is higher and when it's lower. For the light rail, the rail temperature by the sun-light increases quickly and decreases late. But the time where the highest temperature is attained is same. There are some differences between the shade and sunny place about 3.0∼4.0$\^{C}$. The temperature of rail web is almost close to the conversion rail temperature for rail expansion. The wind of 1 m/s has an influence on the rail temperature around 5$\^{C}$.

  • PDF