• Title/Summary/Keyword: joint set

Search Result 683, Processing Time 0.026 seconds

Functional Motion Analysis of Wrist Joints (손목관절의 기능적 운동 특성의 동작 분석)

  • Han Jung Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.543-548
    • /
    • 2003
  • Injuries of wrist in upper extremity is common onset in industrialized world. The development of joint arthroplasty and mechanical joint is area of research for biomechanical engineer and surgeon for a decade. Therefore. the knowledge of characteristic of joint motion is essential to develop the artificial wrist joint. In this study. the joint motions of wrist required for activities of daily living (ADLs). including personal hygiene and care. and general home activity were measured using flexible electrogoniometer. Total of 25 different daily activities were separated into four groups and tested on 15 subjects who did not show any abnormality of their joint functions. The maximum functional range of motion required for ADLs were obtained and standardized for analysis and comparison. Also. a least functional range of motion for ADLs were investigated. Results revealed that any significant differences were not found in least functional range of motion between left and right wrist to perform ADLs. However. a significant difference was found in different ADLs. Therefore. least range of motion obtained in this study can be used as basic data to design artificial joint and set a goal for surgeon to achieve appropriate treatment from patients.

Geological Environments and Deterioration Causes of the Buddhist Triad Cave in Gunwi, Korea (군위 삼존석굴의 지질환경과 훼손원인)

  • 황상구;김수정;이현우
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.407-420
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi (National treasure No. 109) consists of porphyritic biotite granite, and it has been deteriorated into microorganic smears, white films, brown rusts, granular decay, color changes, and joints by the same weathering factors as rain, moisture, temperature variation and microorganic living. Main origin is probably the rain that leaks into the cave along joints in Palgongsan granite, and then its moisture grows many microorganism and is frozen over during winter. The granites around the cave regularly develop two NEE and NWW joint sets that are conjugate to be a joint system. The NEE set extends far away with narrow joint spacings and affects the leakage of the rains, and is divided into 4 joint zones, among which J$_{m}$ and J$_{3}$ immediately affect the leaking water into the cave. An extensional Joint, in northern wall of the cave, was formed by toppling of the block between J$_{m}$and J$_{3}$joint zones from widening the Jm aperture by roots of a big pine tree, and passes through the J$_{m}$joint zone. This bypass allows no circulation of small rain, but a good circulation of heavy rain from influx to the cave for a long pathway. Many Joints and cracks, in the ceiling near the cave entrance, immediately get through the J$_3$ joint zone, and have a good circulation of small rain 10 mm. Both J$_{m}$and J$_{3}$ joint zones are, therefore, chief influxes that cause leakage of the rains.

An Application of Triple Segmental System in Golf Swing through an Inverse Dynamics Function (Inverse Dynamics 함수를 이용한 골프스윙 3분절 시스템의 적용)

  • Lim, Jung;Moon, Gun-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 2005
  • The purpose of this study was to analyze the kinetic factors of the golf driver swing using the Inverse Dynamics function. For this purpose, joint force were calculated. In order to test the possibility of Inverse Dynamics function(motion-dependent interaction), a triple segmental system was set for wrist, left shoulder and lumbar and joint force working on the anatomical joint region was estimated. For this study, 7 professional golfers were sampled, and then, their driver swings were recorded with two high-speed digital video cameras (180 frames/sec.) to be synthesized into 3-dimensional images and coordinated. Then, Eular's equation was used to produce some kinematic data, which were used to calculate joint force and torque with Newton's function. All data were calculated using LabVIEW 6.1 graphic program. The results of this study can be summarized as follows; It was found that the joint force was generated on wrist, shoulder and lumbar joints in the direction of the target, and that the joint force was stronger in the direction of target immediately before impact. The joint force was generated towards the target to activate the nodes, and then, it was generated in the reverse direction to increase the speed during impact.

Optimizing Movement of A Multi-Joint Robot Arm with Existence of Obstacles Using Multi-Purpose Genetic Algorithm

  • Toyoda, Yoshiaki;Yano, Fumihiko
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • To optimize movement of a multi-joint robot arm is known to be a difficult problem, because it is a kind of redundant system. Although the end-effector is set its position by each angle of the joints, the angle of each joint cannot be uniquely determined by the position of the end-effector. There exist the infinite number of different sets of joint angles which represent the same position of the end-effector. This paper describes how to manage the angle of each joint to move its end-effector preferably on an X-Y plane with obstacles in the end-effector’s reachable area, and how to optimize the movement of a multi-joint robot arm, evading obstacles. The definition of “preferable” movement depends upon a purpose of robot operation. First, we divide viewpoints of preference into two, 1) the standpoint of the end-effector, and 2) the standpoint of joints. Then, we define multiple objective functions, and formulate it into a multi-objective programming problem. Finally, we solve it using multi-purpose genetic algorithm, and obtain reasonable results. The method described here is possible to add appropriate objective function if necessary for the purpose.

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

OBLIQUE TRANSCRANIAL RADIOGRAPHIC ANALYSIS OF CHANGES IN CONDYLE POSITION FOLLOWING SAGITTAL SPLIT RAMUS OSTEOTOMY IN MANDIBULAR PROGNATHISM (측사위경두개방사선사진(Oblique Transcranial Radiograph)을 이용한 하악전돌증환자의 하악지 시상골절단술후 하악과두위치변화 분석)

  • Kwon, Tae-Geon;Jang, Hyun-Jung;Lee, Sang-Han
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.17 no.1
    • /
    • pp.32-45
    • /
    • 1995
  • This study was intended to evaluate condyle position and the relationship of condyle position change and post surgical relapse following the sagittal split ramus osteotomy for mandible setback in 25 patients by paired t-test and multiple regression analysis. We used oblique transcranial and cephalometric radiographs taken before operation, immediate after operation, and at least 6 months post operatively. 1. In oblique transcranial view, posterior joint space was decreased immediate after operation and increased 6 months after operation. To compare the measurement before and 6 months after operation, there was no statistically significant change in over all joint spaces(P>0.05). 2. The joint spaces changed under the 0.2mm were 30%, 0.2mm to 1.0mm were 60.7%, above 1.0mm were 9.3%. This result reveals that condyle position was relatively reproduced to pre-operative state. 3. Statistically, the amount of mandible set back didn't influence the post operative relapse(P>0.05). 4. Statistically, the amount of mandible set back didn't influence the condylar displacement(P>0.05), and the amount of joint space change didn't influence the post operative relapse.(P>0.05) The changes in joint space is in the standard tracing error or within the adaptive capacity of the individual, it was too small to influence the stability of surgery.

  • PDF

Analysis of Parameters to Influence on Rock Fragmentation in Bench Blasting (벤치발파에서 암석 파쇄도에 영향을 미치는 요인 분석)

  • 최용근;이정인;이정상;김장순
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In bench blasting, rock fragmentation is one of the most important factors determining productivity. Rock fragmentation could be affected by various conditions and these were hewn that rock joint conditions and in-situ block sizes were the biggest effect on it. This research is focused on what or how to influence on rock fragmentation according to relation between blasting conditions and the in-situ rock conditions such as rock joint conditions and in-situ block size. Field measurements were carried out in 3 open pit limestone mines, where in-situ rock conditions and blasting conditions were fully investigated. The results show that the parameters interact with blasting conditions complicatedly and especially in-situ block size has bigger effects. Dip direction of major joint set also can affect on fragmentation. Mean fragment size become smallest when dip direction of major joint set is about $30^{\circ}$ with the bench direction. The reason is considered to be come from difference of propagation paths of elastic wave.

Joint Optimization of Source Codebooks and Channel Modulation Signal for AWGN Channels (AWGN 채널에서 VQ 부호책과 직교 진폭변조신호 좌표의 공동 최적화)

  • 한종기;박준현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.580-593
    • /
    • 2003
  • A joint design scheme has been proposed to optimize the source encoder and the modulation signal constellation based on the minimization of the end-to-end distortion including both the quantization error and channel distortion. The proposed scheme first optimizes the VQ codebook for a fixed modulation signal set, and then the modulation signals for the fixed VQ codebook. These two steps are iteratively repeated until they reach a local optimum solution. It has been shown that the performance of the proposed system can be enhanced by employing a new efficient mapping scheme between codevectors and modulation signals. Simulation results show that a jointly optimized system based on the proposed algorithms outperforms the conventional system based on a conventional QAM modulation signal set and the VQ codebook designed for a noiseless channel.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Studies on CFST column to steel beam joints using endplates and long bolts under central column removal

  • Gao, Shan;Yang, Bo;Guo, Lanhui;Xu, Man;Fu, Feng
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • In this paper, four specimens of CFST column joints with endplates and long bolts are tested in the scenario of progressive collapse. Flush endplate and extended endplate are both adopted in this study. The experimental results show that increasing the thickness of the endplate could improve the behavior of the joint, but delay the mobilization of catenary action. The thickness of the endplate should not be relatively thick in comparison to the diameter of the bolts, otherwise catenary action would not be mobilized or work effectively. Effective bending deformation of the endplate could help the formation and development of catenary action in the joints. The performance of flexural action in the joint would affect the formation of catenary action in the joint. Extra middle-row bolts set at the endplates and structural components set below the bottom beam flange should be used to enhance the robustness of joints. A special weld access hole between beam and endplate should be adopted to mitigate the chain damage potential of welds. It is suggested that the structural components of joints should be independent of each other to enhance the robustness of joints. Based on the component method, a formula calculating the stiffness coefficient of preloaded long bolts was proposed whose results matched well with the experimental results.