• Title/Summary/Keyword: joint movements

Search Result 344, Processing Time 0.025 seconds

Kinematic Analysis of Lower Extremity and Evaluation of Skill of Skier Using Parameters of Inertial Sensors During Ski Simulator Exercise (스키 시뮬레이터 운동 시 하지 운동특성 분석 및 관성센서 파라미터를 이용한 스키 숙련도 평가)

  • Kim, Jungyoon;Ahn, Soonjae;Park, Sunwoo;Shin, Isu;Kim, Gyoosuk;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • In this study, joint angles of the lower extremity and inertial sensor data such as accelerations and angular velocities were measured during a ski simulator exercise in order to evaluate the skill of skiers. Twenty experts and twenty unskilled skiers were recruited for the study. All expert skiers held the certificates issued by the Korea Ski Instructors Association. A three-dimensional motion capture system and two inertial sensors were used to acquire joint movements, heel acceleration and heel angular velocity during ski simulator exercises. Pattern variation values were calculated to assess the variations in ski simulator motion of expert and unskilled skiers. Integral ratio of roll angular velocity was calculated to determine the parallel alignment of the two feet. Results showed that ski experts showed greater range of motion of joint angle, peak-to-peak amplitude(PPA) of heel acceleration and PPA of heel angular velocity than unskilled skiers. Ski experts showed smaller pattern variations than unskilled skiers. In addition, the integral ratio of roll angular velocity in ski experts was closer to 1. Inertial sensor data measurements during the ski simulator exercises could be useful to evaluate the skill of the skier.

Muscle Strength Measurement using Shoulder and Upper Joint for Korean Young-aged (우리나라 청년층의 어깨 및 상지관절을 이용한 근력 측정)

  • Yoon, Hoon-Yong;Kim, Eun-Sik
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.125-134
    • /
    • 2009
  • The muscle strengths in various postures are used in our daily life with or without our recognition. Also, many works are still performed with strengths, although mechanization and automation have been fairly accomplished at the industry site. Since the late seventies, various body measurements have been conducted periodically in Korea, however, muscle strengths have not been measured actively. For this reason, the muscle strength data have been hardly accumulated. The aims of this study are to learn more about the physical strength of young-aged Koreans and to provide basic information for designing equipments, tools and facilities in the work site and daily life. The muscle strengths that are related to shoulder and upper limbs joints, which are used frequently, are measured in this study. Eighteen muscle strengths, from seven different movements such as elbow flexion, elbow extension, shoulder abduction(seated), shoulder adduction(seated), shoulder rotation(internal and external), lifting a tray, and turning a key(inward and outward) were measured. For every movement, the muscle strengths for both hands were measured. In each measurement, five seconds averaged value and peak value were collected. Comparing the average value, the strength of shoulder adduction was the strongest for male and female, while strength of turning a key inward with left hand was the weakest for male and female. Strengths of preferred hand in elbow extension, shoulder abduction, shoulder external rotation, lifting a tray, and turning a key were stronger than those of non-preferred hand for both male and female. Rohrer's index considerably had an effect on muscle strength. The results of this study can provide some basic information not only in designing the equipment and facilities in work site or daily life, but also in selection, training and management of workers.

Effects of Self-help Tai Chi for Arthritis Applying the Nine Movement Tai Chi (9동작 타이치운동을 이용한 자조타이치 프로그램의 효과)

  • Choi, Jung-Sook;So, Ae-Young;Lee, Kyung-Sook;Lee, Eun-Hee;Lee, In-Ok
    • Journal of muscle and joint health
    • /
    • v.15 no.1
    • /
    • pp.62-72
    • /
    • 2008
  • Purpose: There has been a need to integrating the self-help program for arthritis with the Tai Chi for arthritis(SHTCA). The purpose of this study was to develop and to examine the effect of SHTCA for arthritis applying the nine movement Tai Chi. Method: This study was designed the pre-post test, quasi-experimental design. A total 47 participants were recruited in W-city in Korea, an experimental group(26) and a control group(21) at pre-test, but after the eight weeks the composition of the groups were changed to 22 experimental group and 15 control group. The experimental group participated in the SHTCA once a week for eight weeks. SHTCA program consisted of understanding of the arthritis, contracting of the promise, exercise for muscle strength and joint flexibility and the nine movements of Tai Chi exercise. The measures used to examine the effect of the SHTCA were shoulder flexibility, back flexibility, grasping power, balance, abdominal obesity rates, perception of health status, and EQ-5D standardized five dimensions, mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Results: At The completion of the eight weeks of SHTCA applying the nine movement Tai Chi, the experimental group reported a significance in a number of variables compared to those of the control group: the right shoulder flexibility(p=.018), left shoulder flexibility(p=.031), right grasping power(p=.014), left grasping power(p=.024), the perception of health status(p=.005) and abdominal obesity rates(p=.027). Conclusion: This SHTCA applying the nine movement Tai Chi would be helpful on right shoulder flexibility, left shoulder flexibility, right grasping power, left grasping power, abdominal obesity rates and the perception of health status for arthritis patients.

  • PDF

Analysis of Kinematic Factors between Success and Failure of Free Aerial Cartwheel on the Balance Beam (평균대 한발 몸 펴 옆 공중돌기의 성패에 따른 운동학적 요인 분석)

  • Jung, Choong Min;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Objective: The purpose of this study was to determine the factors of successful and unsuccessful movements through the analysis of kinematics and muscle activity of the Free Aerial Cartwheel on the balance beam. Method: Subjects (Age: 22.8 ± 2.4 yrs., Height: 158.7 ± 5.0 cm, Body mass: 54.1 ± 6.4 kg, Career: 13 ± 2.4 yrs.) who were currently active as female gymnasts participated in the study. They had no history of surgical treatment within 3 months. Subject criteria included more than 10 years of professional experience in college and professional level of gymnastics and the ability to conduct the Free Aerial Cartwheel on the Balance Beam. Each subject performed 10 times of Free Aerial Cartwheel on the balance beam. One successful trial and one unsuccessful trial (failure) among 10 trials were selected for the comparison. Results: It was found that longer time required in case of unsuccessful trial when performing the Free Aerial Cartwheel on the balance beam compared with successful trial. It is expected to be the result of movement in the last landing section (i.e. phase 5). In addition, it was found that the center of gravity of the body descends at a high speed to perform the jump (i.e. phase 2) in order to obtain a sufficient jumping height when the movement is successful while the knee joint is rapidly extended to perform a jump when movement fails. In the single landing section after the jump (i.e. phase 4), if the ankle joint rapidly dorsiflexed after take-off and the hip joint rapidly flexed, so landing was not successful. Conversely, in a successful landing movement, muscle activity of the biceps femoris was greatly activated resulting no shaking in the last landing section (i.e. phase 5). Conclusion: In order to succeed in this movement, it is necessary to perform a strong jump after rapidly descending the center of gravity of the body using the force of the biceps femoris muscle. Further improvement of the skills on the balance beam requires the analysis of the game-like situation with continuous research on kinematic and kinematic analysis of various techniques, jumps, turns, etc.

Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring (산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색)

  • Hyukjoo Yang;Seungsin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors (CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.129-138
    • /
    • 2021
  • This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

Leg Motion Monitoring using Bio-impedance Signal (생체 임피던스 신호를 이용한 하지동작 모니터링)

  • 송철규;변용훈;윤대영;김거식;임정모;전희천;권승범;이정훈;이명권
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2891-2894
    • /
    • 2003
  • This paper describes the possibility of analyzing gait pattern from the variation of the lower leg electrical impedance. This impedance is measured by the four-electrode method. Two current electrodes are applied to the thigh and foot., and two potential electrodes are applied to the lateral aspect. medial aspect, and posterior position of lower leg. We found the optimal electrode position for knee and ankle joint movements based on high correlation coefficient, least Interference, and maximum magnitude of impedance change. From such features of the lower leg impedance, it has been made clear that different movement patterns exhibit different impedance patterns and impedance level.

  • PDF

Stablility Analysis of Underground Cold Storage Openings in Shallow Jointed Rocks (천심도 절리 암반 중에 굴착된 지하 냉장저장 공동의 안정성 해석)

  • 김호영;박연준;한공창;박의섭;선경건
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1997
  • A pilot plant of underground cold storage for food has been excavated as a R&D program. For the stability assessment of underground cold storage opeinengs in shallow jointed rocks, three kinds of stability problems were analyzed by numerical methods. For the analysis of unstability by rock block movements, DEM was used considering the statistical distribution of rock joints. Concerning thermally induced cracking, FDM was used with thermomechanical stress analysis. Finally, in order to evaluate the joint failure during the thawing process, BE algorithm was applied. Numerical examples applied for the pilot plant show that the possibility of unstable failure of opeings exists but can be avoided with proper rock reinforcements provided.

  • PDF

Design of AMI Robot Control System Using PSD and Back Propagation Algorithm (PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Robust Control of Industrial Robot Based on Back Propagation Algorithm (Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어)

  • 윤주식;이희섭;윤대식;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF