• Title/Summary/Keyword: joint moment

Search Result 631, Processing Time 0.033 seconds

Seismic Performance of Precast Concrete Large Panel Structures Subjected to Horizontal Cyclic Loading (반복 횡하중을 받는 프리캐스트 대형 판구조의 내진성능에 관한 연구)

  • Seo, Soo-Yeon;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.261-268
    • /
    • 1999
  • The seismic performance of precast concrete panel structures tested previously has been evaluated in this paper. Hysteretic curves of test specimens are idealized to elasto-plastic curves to get reliable yielding and ultimate displacements. For the idealized curves, ductility and energy dissipation capacity of specimens have been evaluated using a few guide lines. In addition, the strength capacity of specimens is checked for the strength demand caused by the design earthquake load including overturning moment effects. The result shows while the strength of specimen with joint box for vertical continuity is little bit lower than that of specimen connected by welding, the ductility of the former is higher than that of the latter. The energy dissipation ratios of PC specimens are ranged from 83% to 96% of that of Re specimen and the average of those are shown 90%.

  • PDF

A bivariate extension of the Hosking and Wallis goodness-of-fit measure for regional distributions

  • Kjeldsen, Thomas Rodding;Prosdocimi, Ilaria
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.239-239
    • /
    • 2015
  • This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.

  • PDF

Introducing a precast moment resistant beam-to-column concrete connection comparable with in-situ one

  • Esmaeili, Jamshid;Ahooghalandary, Neyram
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.203-215
    • /
    • 2019
  • Precast reinforced concrete structure (PRCS) consists of prefabricated members assembled at worksites and has more connections limitations in comparison with the equivalent in-situ reinforced concrete structure (IRCS). As a result of these limitations, PRCSs have less ductility in comparison with IRCSs. Recent studies indicate that the most noticeable failure in PRCSs have occurred in their connection zone. The objective of this study is introducing a type of precast beam-to-column connection (PBC) which in spite of being simple is of the same efficiency and performance as in-situ beam-to-column connection (IBC). To achieve this, the performance of proposed new PBC at exterior joint of a four story PRCS was analyzed by pseudo dynamic analysis and compared with that of IBC in equivalent IRCS. Results indicated that the proposed connection has even better performance in terms of strength, energy dissipation and stiffness, than that of IBC.

Structural Safety Evaluation of Yangjindang in Sang-ju Using Vibration Characteristics (동적 특성을 고려한 상주 양진당의 구조 안전성 평가)

  • Lee, Ga-Yoon;Lee, Sung-Min;Kim, Si-Yun;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Yangjindang house, which is located in Sang-ju province of South Korea, is one of the special Hanok structures dated back to Joseon dynasty. This study aims to examine structural safety of the Yangjindang wood frame building considering dynamic parameters such as the natural frequency and damping ratio. The numerical model of the wood frame building is implemented using Midas Gen, especially the wood joint where column and beam were connected. The behavior of the actual frame building was compared with the modeling results. In addition, structure responses such as shear force, axial force, flexural moment and deflections were calculated and compared with the allowable limits. Numerical results show that, generally, despite of some local members shear failure, Yangjindang's structural response does not exceed the limitation according to current standards.

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

A Study for Shear Deterioration of Reinforced Concrete Beam-Column Joints Failing in Shear after Flexural Yielding of Adjacent Beams (보의 휨항복 후 접합부가 파괴하는 철근콘크리트 보-기둥 접합부의 전단내력 감소에 대한 해석적 연구)

  • Park, Jong-Wook;Yun, Seok-Gwang;Kim, Byoung-Il;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2012
  • Beam-column joints are generally recognized as the critical regions in the moment resisting reinforced concrete (RC) frames subjected to both lateral and vertical loads. As a result of severe lateral load such as seismic loading, the joint region is subjected to horizontal and vertical shear forces whose magnitudes are many times higher than in column and adjacent beam. Consequently, much larger bond and shear stresses are required to sustain these magnified forces. The critical deterioration of potential shear strength in the joint area should not occur until ductile capacity of adjacent beams reach the design demand. In this study, a method was provided to predict the deformability of reinforced concrete beam-column joints failing in shear after the plastic hinges developed at both ends of the adjacent beams. In order to verify the deformability estimated by the proposed method, an experimental study consisting of three joint specimens with varying tensile reinforcement ratios was carried out. The result between the observed and predicted behavior of the joints showed reasonably good agreement.

Behavior of Non-seismic Detailed Low-Rise R/C Exterior Beam-to-Column Joints Subjected to Cyclic Loading (반복 하중을 받는 비내진 저층 RC 구조물의 외부 기둥-보 접합부의 거동)

  • Sur, Man-Sik;Chang, Chun-Ho;Kim, Young-Moon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Seismic design code has been performed since 1988 in Korea, so it has not been applied to low-rise reinforced concrete buildings which had been built before 1988. Those building have been designed only for gravity loads based on non-seismic code, Therefore, even minor earthquake occurred, those buildings might have serious damages. In this paper, to investigate the behavior of low-rise reinforced concrete moment resisting frame which had been built in according to the building code of Korea that had been published before 1988, two type of 1/2 scaled exterior beam-column subassemblies which have non-seismic detailing based on the building code of Korea were constructed and tested with reversed cycling loading under the displacement control method. The special features of joint with non-seismic detailing is that there is no transverse reinforcement in the joint. In tests, cracks pattern, strength degradation, loss of stiffness, energy dissipation and the slippage of beam and column bars were investigated. Cracks did not occurred in the joint even seismic loading of 0.12g which is considered as peak ground acceleration in Korea was applied. And increasing seismic loading above 0.12g shear crack happened in the joint which have not transverse beam.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

Biomechanical Analysis of Walking and Running after a Surgically Repaired Achilles Tendon Rupture (아킬레스건 파열 수술 후 걷기 및 달리기 운동역학적 분석)

  • Heo, Jeong;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the difference in muscle strength, kinematics, and kinetics between injured and non-injured sides of the leg after Achilles Tendon Rupture surgery during walking and running. Method: The subjects (n=11; age = 30.63 ± 5.69 yrs; height = 172.00 ± 4.47 cm; mass = 77.00 ± 11.34 kg; time lapse from surgery = 29.81 ± 10.27 months) who experienced Achilles Tendon Rupture (ATR) surgery participated in this study. The walking and running trials were collected using infrared cameras (Oqus 300, Qualisys, Sweden, 100 Hz) on instrumented treadmill (Bertec, U.S.A., 1,000 Hz) and analyzed by using QTM (Qualisys Track Manager Ver. 2.15; Qualisys, U.S.A). The measured data were processed using Visual 3D (C-motion Inc., U.S.A.). The cutoff frequencies were set as 6 Hz and 12 Hz for walking and running kinematics respectively, while 100 Hz was used for force plate data. Results: In ATR group, muscle strength there were no difference between affected and unaffected sides (p> .05). In kinematic analysis, subjects showed greater ROM of knee joint flexion-extension in affected side compared to that of unaffected side during walking while smaller ROM of ankle dorsi-plantar and peak knee flexion were observed during running (p< .05). In kinetic analysis, subjects showed lower knee extension moment (running at 2.2 m/s) and positive ankle plantar-flexion power (running at 2.2 m/s, 3.3 m/s) in affected side compared to that of unaffected side (p< .05). This lower positive ankle joint power during a propulsive phase of running is related to slower ankle joint velocity in affected side of the subjects (p< .05). Conclusion: This study aimed to investigate the functional evaluation of the individuals after Achilles tendon rupture surgery through biomechanical analysis during walking and running trials. Based on the findings, greater reduction in dynamic joint function (i.e. lower positive ankle joint power) was found in the affected side of the leg compared to the unaffected side during running while there were no meaningful differences in ankle muscle strength and walking biomechanics. Therefore, before returning to daily life and sports activities, biomechanical analysis using more dynamic movements such as running and jumping trials followed by current clinical evaluations would be helpful in preventing Achilles tendon re-rupture or secondary injury.

A Study on the Stiffness of CBA(Corner Block with Anchor Bolt) Joint in Knockdown Type Table Furniture (조립식(組立式) 탁자(卓子)의 CBA접합부(接合部) 강성(剛性)에 관(關)한 연구(硏究))

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-64
    • /
    • 1989
  • Corner block with anchor bolt(CBA) joint method used in knock-down type table furniture manufacturing can reduce the packing and transporting cost. Unfortunately. it also has the disastrous defect to be loosend and unstable during the service life mainly due to fatigue and creep(repeated and prolonged loading). So 22 joint groups constructed were tested to evaluate the effect of some design factors related to the size of side rail(apron). block attachment to side rail. and the number of anchor bolt as well as the effect of the type of corner block(mitered type vs. rectangular type) Usable strength from the stiffness coefficients of each joint group were analysed with SPSS /PC+ and described as the criteria of CBA joint construction. The conclusions were as follows: The height of side rail(50, 75 and 100 mm) and the addition of polyvinyl acetate(PVAc) emulsion in the corner block attactment to side rail had the effect on raising the usable strength of CBA joint with remarkable high significance. And the effect of 2 - anchor bolts was also superior to that of 1 - bolt significantly. However. the thickness of side rail(22 mm vs. 25 mm) had no effect on the strengthening the table joint rigidity. Mitered type corner block joint appeared to he recommendable for CBA jointed table construction rather than the rectangular type one regardless of the method of block attachment to side rail. The best result identified from Duncan's multiple comparison was in the construction with 25 mm thick and 100 mm height of side rail fastened using 2 - anchor bolts in mitered type corner block. But it would be reasonable to use 22 mm thick & 75 mm high side rail and mitered corner block with PVAc emulsion & 2 bolts considering the productivity and production cost down in the MDF furniture manufacturing industries.

  • PDF