• Title/Summary/Keyword: joint efficiency

Search Result 708, Processing Time 0.036 seconds

Probability Sampling Using Nonlinear Programming : a Feasibility Study

  • Kim, Sun-Woong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.201-205
    • /
    • 2003
  • We show how some probability nonreplacement sampling designs can be implemented using nonlinear programming, The efficiency of the proposed approach is compared with selected probability sampling schemes in the literature. The approach is simple to use and appears to have reasonable variance.

  • PDF

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

Design of Clutch Mechanism for Increased Actuator Energy Efficiency of Electrically Actuated Lower Extremity Exoskeleton (전기식 하지 외골격 로봇의 구동기 에너지 효율 향상을 위한 클러치 메커니즘 설계)

  • Kim, Ho Jun;Kim, Wan Soo;Lim, Dong Hwan;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • This paper reports on the development of a roller-cam clutch mechanism. This mechanism can transfer bidirectional torque with high backdrivability, as well as increase actuation energy efficiency, in electrical exoskeleton robots. The developed mechanism was installed at the robot knee joint and unclutched during the swing phase which uses less metabolic energy, thereby functioning as a passive joint. The roller-cam clutch aimed to increase actuation energy efficiency while also producing high backdrivability by generating zero impedance for users during the swing phase. To develop the mechanism, mathematical modeling of the roller-cam clutch was conducted, with the design having more than three safety factors following optimization. Titanium (Ti-6AL-4V) material was used. Finally, modeling verification was done using ANSYS software.

A Method of Intra Mode Coding for Joint Exploration Model (JEM) (차세대 비디오 부호화 실험모델(JEM)의 화면내 예측 모드 부호화 기법)

  • Park, Dohyeon;Lee, Jinho;Kang, Jung Won;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.495-502
    • /
    • 2018
  • JVET (Joint Video Exploration Team) which explored evolving technologies of video coding with capabilities beyond HEVC (High Efficiency Video Coding), released a references software codec named the Joint Exploration Model (JEM) for performance verification of coding technologies. JEM has 67 intra prediction modes that extend the 35 modes of HEVC for intra prediction. Therefore, the enhancement of the coding performance is limited due to the overhead of prediction mode coding. In this paper, we analyze the probabilities of prediction modes selections, and then we propose a more efficient intra prediction mode coding based on the results of analyzed mode occurrence. In addition, we propose a context modeling for CABAC (Context-Adaptive Binary Arithmetic Coding) of the proposed mode coding. Experimental results show that the BD-rate gain is 0.02% on the AI (All Intra) coding structure compared to JEM 7.0. We need to optimize context modeling for additional coding performance enhancement.

Axially-loaded multiplanar tubular KTX-joints: numerical analysis

  • Zhang, Chenhui;Zou, Bo;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.173-190
    • /
    • 2022
  • With the development of spatial structures, the joints are becoming more and more complex to connect tubular members of spatial structures. In this study, an approach is proposed to establish high-efficiency finite element model of multiplanar KTX-joint with the weld geometries accurately simulated. Ultimate bearing capacity the KTX-joint is determined by the criterion of deformation limit and failure mechanism of chord wall buckling is studied. Size effect of fillet weld on the joint ultimate bearing capacity is preliminarily investigated. Based on the validated finite element model, a parametric study is performed to investigate the effects of geometric and loading parameters of KT-plane brace members on ultimate bearing capacity of the KTX-joint. The effect mechanism is revealed and several design suggestions are proposed. Several simple reinforcement methods are adopted to constrain the chord wall buckling. It is concluded that the finite element model established by proposed approach is capable of simulating static behaviors of multiplanar KTX-joint; chord wall buckling with large indentation is the typical failure mode of multiplanar KTX-joint, which also increases chord wall displacements in the axis directions of brace members in orthogonal plane; ultimate bearing capacity of the KTX-joint increases approximately linearly with the increase of fillet weld size within the allowed range; the effect mechanism of geometric and loading parameters are revealed by the assumption of restraint region and interaction between adjacent KT-plane brace members; relatively large diameter ratio, small overlapping ratio and small included angle are suggested for the KTX-joint to achieve larger ultimate bearing capacity; the adopted simple reinforcement methods can effectively constrain the chord wall buckling with the design of KTX-joint converted into design of uniplanar KT-joint.

Research about Expansion Joint of Continuous Welded Rail on Reset (장대레일 신축이음매 재설정에 관한 연구)

  • Min, Jun-Ho;Lee, Chang-Hun;Ryu, Jae-Kwang;Kim, Hyo-San
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2129-2134
    • /
    • 2011
  • This research increases efficiency of track-maintenance repair and cuts maintenance cost with relocating Continuous Welded Rail how to set up install criteria by comprehension analysis through an on-the-spot survey and track measurement about installing place at expansion joint of Continuous Welded Rail. This scope of this research is 427 places installed at Line No.1~4, Seoulmetro. We take a field study and select two spots. So we survey wheel-load, cross-load and railbed cross-resistance and suggest install criteria of expansion joint of Continuous Welded Rail through investigation and analysis of track facilities about neighboring section of expansion joint.

  • PDF

An Experimental Study on Column Penetration Joint of RC Column-Steel Beam (기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구)

  • 김승훈;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

Biomechanical Analysis of the Shelf Operation for Dysplastic Hip Joint by Finite Element Analysis (유한요소해석을 이용한 이형성 고관절의 선반형성술에 대한 생체역학 해석)

  • Park W.M.;Kim Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.519-520
    • /
    • 2006
  • The aim of this study was biomechanical analysis of shelf operation in patients with dysplastic hip joint by finite element contact analysis. Two dimensional CT images were used to construct the finite element models to analyze the contact pressure, and the 3D expansion of the Ninomiya's method was used in the calculation of the resultant force in the hip joint. The surgery recovered the center-edge angles to the normal anatomical range and increased the contact areas in two patients. The maximum contact pressures and von-mises stresses were decreased. The present study provides the biomechanical guideline of optimal surgical parameters to maximize the surgical efficiency and the clinical outcomes in dysplastic hip joint using the shelf operation.

  • PDF