• Title/Summary/Keyword: joint angle

Search Result 1,439, Processing Time 0.029 seconds

Effect of Joint Mobilization and Insole on Pain, Pelvic Angle, and Foot Pressure in Patient with Sacroiliac Joint Pain : A Randomized Controlled Pilot Trial (관절가동술과 깔창적용이 엉치엉덩관절통증환자의 통증과 골반경사각, 족저압에 미치는 효과: 무작위배정예비임상시험)

  • Lim, Chae-Gil
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.383-392
    • /
    • 2020
  • This study was to compare the effects of joint mobilization, treadmill with insole, and joint mobilization and treadmill with insole on pain, pelvic angle, and foot pressure in patients with sacroiliac joint pain. 24 patients randomly assigned to joint mobilization group(n=8), treadmill with insole group(n=8), or joint mobilization and treadmill with insole group(n=8). Each groups were conducted 30 minutes a day, two days a week for four weeks. Pain was evaluated using visual analogue scale and pelvic angle was measured using palpation meter and foot pressure(fore/rear ratio) was measured using Gateview AFA-50 before intervention and after 4 weeks. All groups were significant differences pain in intragroup(p<.01). In pelvic angle, the joint mobilization group was statistically significant in the anterior tilt only, the joint mobilization and treadmill with insole group showed statistically significant improvement in both anterior and posterior tilt(p<.01), and the treadmill with insole group did not show any statistically significant change(p>.05). Also the joint mobilization and treadmill with insole group were significant differences in foot pressure(p<.01). All the interventions reduce sacroiliac joint pain and joint mobilization and treadmill with insole training are most effective changes in pelvic angle and foot pressure. This study can be used as a basic data for prevention of injury, posture correction and gait training in patients with sacroiliac joint pain, as well as chronic low back pain and plantar pressure problem.

Kinematic Analysis of Lower Extremities during Staris and Ramp Walking with Hemiplegic Patients (편마비 환자의 계단과 경사로 보행 동안 하지의 운동학적 분석)

  • Cheon, Dong-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.297-302
    • /
    • 2013
  • Purpose: This study was conducted in order to investigate the kinematic gait parameter of lower extremities with different gait conditions (level walking, stair, ramp) in hemiplegic patients. Methods: Ten hemiplegic patients participated in this study and kinematic data were measured using a 3D motion analysis system (LUKOtronic AS202, Lutz-kovacs-Electronics, Innsbruk, Austria). Statistical analysis was performed using one-way repeated measure of ANOVA in order to determine the difference of lower extremity angle at each gait phase with different gait conditions. Results: Affected degree of ankle joint in the heel strike phase showed significant difference between level walking and climbing stairs, and toe off phase showed significant difference between level walking and climbing stairs, ramps, and climbing stairs. Affected degree of knee joint showed no significant difference in all attempts. Affected degree of hip joint in the toe off phase showed significant difference between level walking, ramps and stairs, and climbing ramps. Swing phase showed significant difference between sides for level walking and stairs, climbing ramps. Affected ankle joint of heel strike and toe off, and affected hip joint of toe off and the maximum angle of swing phase in the angle was increased. Unaffected side of the ankle joint, knee joint, and hip joint showed a significant increase in walking phase. Conclusion: These findings indicate that compared with level walking, different results were obtained for joint angle of lower extremity when climbing stairs and ramps. In hemiplegia patient's climbing ramps, stairs, more movement was observed not only for the non-affected side but also the ankle joint of the affected side and hip joint. According to these findings of hemiplegic patients when climbing stairs or ramps, more joint motion was observed not only on the unaffected side but also on the affected side compared with flat walking.

Kinematics Analysis of Rumba Cucarachas Motion (룸바 쿠카라차 동작의 운동학적 분석)

  • Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.145-160
    • /
    • 2004
  • The purposes of this study to provide quantitative data in necessary to advance techniques kinematic analysis of Cucarachas which is an action of Rumba. Then, this study is performed on 5 female players who have won within the third prize at a national athletic meeting. When whole foot reached to floor, Displacement of right-left hip joint (until $E1{\sim}E3$ average moved 15.15cm)is found at right-left direction since the hip joint is turned to right back. On the other side, large displacement is shown because Rumba Cucaracha Movement is expressed by maximum shift of hip joint to right and left direction. Displacement of right hip joint(E3$57.40{\pm}7.46$) is found in front and in rear direction since hip joint is moved in rear and in front to turn the hip joint. It may be stated that this is ideal displacement expressed by movement of whole body with artistic poise and presentation because role of hip joint is very important in technical and artistic side. Angle of right shoulder joint E2($105.44{\pm}9.64$) is got wider. It may be stated that player shifts up and abduct elbow joint to right since center of gravity of player is exceedingly shifted to right in this motion of Cucarachas. On the other hand, since this motion is abducted right elbow and shrunk external abdominal oblique to him center of body to left front of hip joint, the angle becomes narrow. It is shown that angle of knee in right knee joint E4($75.44{\pm}2.61$) is large since right leg and hip joint is turned by foot using reaction of ground and so center of body is shifted to left. Large angle of ankle E4($134.40{\pm}10.50$) in Cucaracha Movement is shown by the action of twist force using narrow part of foot and compression force against ground with adduction speed of arm. The various kinematic analyses associated with motions of dance sport have not been sufficiently peformed so far, and thus a number of research projects for dance sport should be proposed and performed to be continuous.

The Kinematic Analysis of the Lower Extremity Joint According to the Changes in Height of Box during Step Aerobics (스텝 에어로빅에서 박스 높이 변화에 따른 하지관절의 운동학적 분석)

  • Kim, Kyu-Soo;So, Jae-Moo;Kim, Yun-Ji;Yeo, Houng-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • This study researched into the left-right inclination of the rear foot at the lower limb joints, knee joint angle, angular velocity of the knee joint, angular acceleration and the max. Based on the analysis of kinematics according to the changes in the height of step box (6, 8, 10 inches) during step aerobics of female college students majoring in physical education. The findings of this study are as follows: Then angle of the knee joint decreased as the height of the step box increased the min. Angle was measured right before the right foot was on the step box, and the angle tended to decrease as the step box get heightened. The left-right inclination of the rearfoot angle according to the height of step box increased as the height increased. In the 'pull-up' stage during which the weight was loaded on the right foot the angle increased, while in the right foot stepping stage during which the right foot was on the ground, the left-right inclination of the rearfoot angle increased as the height of the step box increased. The angular velocity of the knee joint according to the height of step box started increasing when the right foot initially stepped on the step box and during the initial stepping section, the angular velocity decreased as the height of step box increased. The changes in angular acceleration of the knee joint according to the height of step box increased as the height of step box increased.

The Reliability of Flexor Hallucis Longus Stretch Test in Subjects with Asymmetric Hallux Valgus Angles

  • Koh, Eun-Kyung;Jung, Do-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.124-127
    • /
    • 2016
  • Purpose: The flexor hallucis longus stretch test can determine the shortness of the flexor hallucis longus muscle by measuring the angle of extension in the first metatarsophalangeal (MTP) joint at maximum ankle dorsiflexion. Less than 30 degrees of the first MTP joint at the maximal ankle dorsiflexion indicates shortness of the flexor hallucis longus muscle. The purpose of this study was to examine the intra- and inter-reliability of the flexor hallucis longus stretch test in subjects with asymmetric hallux valgus (HV) angles. Methods: Sixteen subjects with asymmetric HV angles participated in this study. In sitting position, dorsiflexion angles of the first MTP joint were measured with maximum ankle dorsiflexion on each side. ICC (3,1) and ICC (3,k) models were used, respectively, to assess the intra-reliability and inter-reliability of the flexor hallucis longus stretch test. The paired-t test was used to compare the dorsiflexion angle of the first MTP joint on the side with the smaller HV angle with that of the side with the larger HV angle. Results: The results of the study showed that both intra- and inter-reliability were more than 0.95 of the coefficient. Dorsiflexion angle of the first MTP joint was higher on the side with the smaller HV angle. Conclusion: Use of the flexor hallucis longus stretch test is acceptable in clinical settings because both intra- and inter-reliability were high in subjects with asymmetric HV angles. In addition, shortness of the flexor hallucis longus muscle is associated with HV angle. This study provides useful information for use in management of HV deformity.

The Analysis of Swing Pattern during the Soft Golf Swing (소프트 골프 스윙 시 스윙 패턴 분석)

  • So, H.J.;Yu, M.;Kwak, K.Y.;Kim, S.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2010
  • Soft Golf is a newly developed recreational sport in our research team aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. The purpose of this study is to analyze ground reaction force(GRF) and joint angle during soft Golf club and regular golf club swing. The GRF of golf swing was recorded by 3-D motion analysis system and forceplate. The joint angle of golf swing was obtained from computer simulation model. The GRF and joint angle of golf swing are used to analysis of golf swing pattern. The pattern of GRF and joint angle during soft golf club swing was similar to that during regular golf club swing. This result means that soft golf club reduces the risk of injury and has an effect on similar entertainment of regular golf.

The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait (파워워킹과 일반보행의 운동학적 및 EMG 비교분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Kim, Eun-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

Correlation between Lower Extremities Joint Moment and Joint Angle According to the Different Walking Speeds (보행 속도에 따른 하지 관절의 각도와 모멘트의 상관관계)

  • Shin, Seong-Hyoo;Lee, Hyo-Keun;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.75-83
    • /
    • 2008
  • The purpose of this study was to evaluate the correlation between joint moment and joint position angle according to the different walking speeds. According to the different walking speeds(1.5m/s, 1.8m/s, 2.1m/s), experiments were terminated by 8 male subjects. In conclusion, 1. The peak extensor moment of knee joint increased by increasing walking speed, however, walking speed didn't have an effect on peak flexor and abductor moment of knee joint. 2. The position angle of knee joint increased movement of flexion, but other position angles of knee joint didn't have difference when the peak extensor moment generated. 3. The peak joint moment of hip significantly increased in extension, flexion and abduction by increased walking speed. 4. The hip position angle showed more flexible at the hip peak flexor/extensor moment generated. 5. The co-ordination pattern between peak knee joint moment and knee position angle were mathematically modeled by using a least square method. We could get the high level value of R2. We expect to apply this results for evaluating the physical faculty of knee joint.

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.

Driveline Vibration Reduction of FR(front engine rear wheel drive) Vehicle at Rapid Acceleration (후륜 구동 차량의 급가속 시 구동계 진동 저감)

  • Kim, Yong-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.592-599
    • /
    • 2014
  • A torsional vibration at driveline happens seriously at rapid vehicle acceleration. The torsional vibration at driveline can be reduced by optimization of joint angle and yoke phase angle of driveline. But, the joint angle of driveline is changed according to vehicle driving condition as acceleration, deceleration, forward and backward driving, so that excessive vibration is transmitted to vehicle body at specific driving condition. Especially under rapid acceleration condition, vibration transmitted to body could be maximized because excitation force at rapid acceleration is bigger than that at normal driving condition due to changed joint angle. The torsional vibration of driveline can be kept at low level by controlling suspension parameter to minimize rigid axle displacement as well as optimizing joint angles considering the vehicle acceleration condition.