• 제목/요약/키워드: jet injection

검색결과 344건 처리시간 0.024초

RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine)

  • 안재현;김형모;신명철;김세원
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine)

  • 강필중;김형모;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

$CO_2$ 소화제 노즐 분사각 및 분사속도가 $CO_2$ 농도분포특성에 미치는 영향에 관한 수치적 연구 (A Numerical Simulation of the Effect of the Injection Angle and Velocity of the $CO_2$ Agent Nozzle on the Characteristics of $CO_2$ Concentration Distribution)

  • 박찬수
    • 한국화재소방학회논문지
    • /
    • 제20권2호
    • /
    • pp.44-53
    • /
    • 2006
  • 선박에 설치되는 고정식 $CO_2$ 소화장치의 구성요소 중 하나인 $CO_2$ 소화제분사노즐의 분사각과 분사속도가 유동 및 $CO_2$ 농도분포특성에 미치는 영향을 분석하기 위하여 전산모의실험을 2차원 비정상상태로 수행하였다. 유동장과 $CO_2$ 소화제 농도장을 계산하여 분석하였다. 소화제 분사노즐의 조건에 따라 유동형태의 상이성을 확인할 수 있었으며, 모든 소화제 분사노즐조건에서 와류가 형성되는 영역으로부터 주위로 등농도선대가 확장됨을 알 수 있었다. 소화제 분사노즐각에 따라 계산영역의 밑바닥면을 따르는 벽면제트기류의 강도가 다르게 나타났고, 등농도선대가 확장 또는 축소됨을 예측 가능하였다. $CO_2$ 소화제 분사유량을 일정하게 유지한 상태에서 소화제 분사속도를 증가시키는 것이 감소시키는 것 보다 더 높은 $CO_2$ 등농도선대가 밑바닥면 상에 형성될 것으로 예측되었다.

큰에디모사법을 이용한 소형 연소기의 난류 유동장 내 스칼라 혼합에 대한 수치해석 (NUMERICAL ANALYSIS ON THE MIXING OF A PASSIVE SCALAR IN THE TURBULENT FLOW OF A SMALL COMBUSTOR BY USING LARGE EDDY SIMULATION)

  • 최항석;박태선
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.67-74
    • /
    • 2006
  • The characteristics of turbulent flow and mixing in a small can type combustor are investigated by means of Large Eddy Simulation (LES). Attention is paid for a combustor having a baffle plate with oxidant injection and fuel injection holes and study is made for three cases of different baffle plate configurations. From the result, it is confirmed that mixing is promoted by interaction between the jets during their developing process and large vortical flows generated in the vicinity of the combustor wall or fuel jet front. This particular flow feature is effective to accelerate the slow mixing between fuel and oxidant suffering from low Reynolds number condition in such a small combustor. In particular, the vortical flow region ahead of fuel jet plays an important role for rapid mixing. Discussion is made for the time and space averaged turbulent flow and scalar quantities which show peculiar characteristics corresponding to different vortical flow structures for each baffle plate shapes.

양파 박피기 개발 (II) - 공기분사식 박피장치 - (Development of An Onion Peeler ( II ) - Air injection type peeling equipment -)

  • 민영봉;김성태;강동현;최선웅;유준현
    • Journal of Biosystems Engineering
    • /
    • 제27권4호
    • /
    • pp.311-316
    • /
    • 2002
  • This study was carried out to investigate the optimum operating conditions of the air injection type onion peeling device which could be attached to a prototype onion peeler. An onion, stem and root was cut and some vertical line was dug in 1 mm depth on the skin, was put on the two parallel rollers. The diameters of the rollers were 105 mm and the ratio of peripheral velocity was 3:2, and moved by a geared motor. Air from the nozzle with high pressure and velocity was jetted to the rotating onion on the revolving rollers, and then the skin of the onion was stripped. On the test, the rolling characteristics of the experimental materials were measured. The effective peeling conditions were, the number of digging line on the skin of the onion was 4, and the air jet pressure was above 392.3 kPa(4.0 kg/$\textrm{cm}^2$) when the peripheral velocity was at 2.4 m/s. On these conditions, time requirement to peel an onion was less than 2 sec.

비전도성 액체의 전기수력학적 분무에 관한 실험적 연구 (An Experimental Study on Electrohydrodynamic Atomization of Non-Conducting Liquid)

  • 이기준;박종승;이상용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1322-1327
    • /
    • 2004
  • In the present work, a series of experiments have been performed on electro-hydrodynamic atomization of non-conducting liquid using a charge injection type nozzle. Effects of liquid flow rate, input voltage, and distance between the needle and the ground electrode (nozzle-embedded metal plate) have been examined. For fixed electrode distances, total and spray currents increase with increase of liquid flow rate and input voltage. When the distance between the needle and the ground electrode becomes closer, total, leakage and spray current increase, but the onset voltage for dielectric breakdown decreases. When the electric field strength of the liquid jet exceeds that for the air breakdown, a portion of the electric charges in the liquid jet is dissipated into the ambient air, and the charge density shows a limiting value. Atomization quality can be improved by increasing the flow rate because the higher charge density is achieved with the larger liquid velocity in addition to the enhanced aerodynamic effect.

  • PDF

다공성재를 이용한 동축형 분사기의 미립화특성 (Atomizing Characteristics of Coaxial Porous Injectors)

  • 김도헌;신정환;이인철;구자예
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

모래자갈층에서 터널시공을 위한 굴착 전 그라우팅 보강 사례 (Pre-reinforcing Grouting a Sand Gravel Layer for Tunnelling)

  • 김치환
    • 터널과지하공간
    • /
    • 제26권6호
    • /
    • pp.466-474
    • /
    • 2016
  • 터널의 윗부분이 모래자갈인 지층에서 터널을 시공하기 위하여 터널천정부를 그라우팅으로 굴착 전에 미리 보강하였다. 지하수가 있는 구간에서 강관다단그라우팅으로 LW 혹은 초미립자시멘트의 SSM을 주입하여 지하수 유출을 억제함과 동시에 모래자갈층의 강도를 높여 터널을 안전하게 시공할 수 있었다. 지하수가 배수되어 버린 구간에서는 제트그라우팅으로 보강한 후 터널을 시공하였다. 그라우팅 주입 후의 보강효과는 터널굴착 중 지하수의 유출 여부와 터널천정의 모래자갈이 부착되어 있지 않고 탈락하는지 여부로 확인하였다.

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

횡단류에 분사되는 액체 제트의 분무 및 연소 특성 (Spray and Combustion Characteristics of Liquid Jet in Cross Flow)

  • 이관형;김두만;구자예;황진석
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.48-58
    • /
    • 2006
  • 횡단류에 분사되는 액체 제트의 분무 및 연소 특성에 대한 수치적 연구를 수행하였다. 수치 계산을 위해 3차원의 분무 및 화학반응 유동 해석에 유용한 KIVA 코드를 횡단류에서의 분무 해석에 적합하도록 수정하여 사용하였다. 액주의 분열과 리거먼트 및 액적의 분열 현상을 해석하기 위하여 wave 모델과 KH-RT hybrid 모델이 사용되었다. 침투길이는 유입공기의 속도가 감소하거나 분사속도가 증가함에 따라 증가하였다. 유입공기의 속도가 증가할수록 계산결과의 오차가 크게 발생함을 알 수 있었다. 연소 특성에 대한 수치 해석으로 연소실 내부의 화염전파 형상과 국부지역에서의 온도및 공해 배출량에 대한 결과를 얻었다.