DOI QR코드

DOI QR Code

Spray and Combustion Characteristics of Liquid Jet in Cross Flow

횡단류에 분사되는 액체 제트의 분무 및 연소 특성

  • Published : 2006.12.31

Abstract

The spray and combustion characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which may be used to generate numerical solutions to spray and chemical reactive fluid problem in three space dimensions and modified to be suitable for simulating liquid jet ejected into the cross flow. Wave model and Kelvin- Helmholtz(KH) /Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Penetration length increases as flow velocity decreases and injection velocity increases. Numerical error increases as inflow velocity increases. The results of flame propagation contour in combustion chamber and local temperature distribution, combustion emissions were obtained.

횡단류에 분사되는 액체 제트의 분무 및 연소 특성에 대한 수치적 연구를 수행하였다. 수치 계산을 위해 3차원의 분무 및 화학반응 유동 해석에 유용한 KIVA 코드를 횡단류에서의 분무 해석에 적합하도록 수정하여 사용하였다. 액주의 분열과 리거먼트 및 액적의 분열 현상을 해석하기 위하여 wave 모델과 KH-RT hybrid 모델이 사용되었다. 침투길이는 유입공기의 속도가 감소하거나 분사속도가 증가함에 따라 증가하였다. 유입공기의 속도가 증가할수록 계산결과의 오차가 크게 발생함을 알 수 있었다. 연소 특성에 대한 수치 해석으로 연소실 내부의 화염전파 형상과 국부지역에서의 온도및 공해 배출량에 대한 결과를 얻었다.

Keywords

References

  1. Liu, A.B. and Reitz, R.D., 'Mechanisms of Air-Assisted Liquid Atomization', Atomization and Sprays, Vol. 3, 1992, pp. 1-21
  2. Krzeczkowski, S.A., 'Measurement of Liquid Droplet Disintegration Mechanism', Int. J. Multiphase Flows, Vol. 6, 1980, pp. 227-239 https://doi.org/10.1016/0301-9322(80)90013-0
  3. Wu, P.K and Feath, G.M., 'Areodynamic effects on Primary Breakup of Turbulent Liquids', Atomization and Sprays, Vol. 3, 1993, pp. 265-289 https://doi.org/10.1615/AtomizSpr.v3.i3.20
  4. Ranger, A.A. and Nicholls, J.A., 'The Aerodynamic Shattering of Liquid Drops', AIAA J., Vol.7, 1969, pp. 285-291 https://doi.org/10.2514/3.5087
  5. O'Rourke, P.J. and Amsden, A A, ''The TAB Method for Numerical Calculation of Spray Droplet Breakup', SAE Trans., 1987, 872089
  6. Ibrahim, E.A., et. al., 'Modeling of Spray Droplets Deformation and Breakup', J. of Propulsion and Power, Vol. 9, No.4, 1993, pp. 651-654 https://doi.org/10.2514/3.23672
  7. Reitz, R.D., 'Modeling Atomization Processes in High-pressure Vaporizing Sprays,' Atomization and Sprays Technology, Vol. 3, 1987, pp. 309-337
  8. Beale, J.C. and Reitz, R.D., 'Modeling Spray Atomization with The Kelvin-Helmholtz / Rayleigh-Taylor Hybrid Model', Atomization and Sprays, Vol. 9, 1999, pp. 623-650
  9. Madabhushi, R.K., ' A Model for Numerical Simulation of Breakup of a Liquid Jet in Crossflow', Atomization and Sprays, Vol. 24, 2003, pp. 889-912
  10. Durbin, M.D., and Balla, D.R., 'Studies of Lean Blowout in a Step Swirl Combustor', Transactions of the ASME, Vol. 118, 1996, pp. 72-77
  11. Durbin, M.D., and Balla, D.R. and Katta V.R., 'Study of Flame Stability in a Step Swirl Combustor', Transactions of the ASME, Vol.118, 1996, pp. 308-315
  12. Coghe A., Solero G., and Scribano, G., 'Recirculation phenomena in natural gas swirl combustor', Vol. 28, 2004, pp. 709-714 https://doi.org/10.1016/j.expthermflusci.2003.12.007
  13. Takashi, T., and Shingeru, S., 'The Effect of Fuel-Air Mixing on Ox Formation in Non-Premixed Swirl Burners', Twenty-Sixth Symposium on Combustion, The Combustion Institute, 1996, pp. 2733-2739
  14. Xue, H., and Aggarwal, S. K., 'NOx emissions in n-heptan/ air partially premixed flames', Combustion and Flame, Vol. 132, 2002, pp. 723-741 https://doi.org/10.1016/S0010-2180(02)00534-5
  15. Amsden, A.A., O'Rourke, P.J. and Butler T.D., 'KIV A- II: A Computer Program for Chemically Reactive Flows with Sprays', Los Alamos National Laboratory Report, 1989, No. LA-11560-MS
  16. Xin, J. Ricart, L. and Reitz, R.D., 'Computer Modeling of Diesel Spray Atomization and Combustion', Combustion Sci. Technol., Vol.137, 1-6, 1998, pp. 171 https://doi.org/10.1080/00102209808952043
  17. Levich, P.J., 'Physicochemical Hydrodynamics', Prentice-Hall, Englewood Cliffs, NJ, 1962
  18. Amsden A. A., 'KIVA-3: A LIVA Program with Block-Structures Mesh for Complex Geometries', Los Alamos National Labratory report, 1993, LA-12503-MS
  19. Westbrook, C.K. and Dryer, F.L., 'Chemical Kinetic Modeling of Hydrocarbon Combustion', Prog. Energy Combust. Sci., 1984, 1-57
  20. Westbrook, C.K. and Dryer, F.L., 'Simplified Reaction Mechanism for the Oxidation of Hydrocarbon Fuels in Flames', Combustion Science and Technology, Vol.27, 1981, pp. 21-43
  21. Meintjes, K. and Morgan, A. P., 'Element Variables and the Solution of Complex Chemical Equilibrium Problems', General Motors Research Publication, 1987, GMR-5827
  22. Ramshaw, J.D. and Amsden, A.A., J. Comput. Phys., 1987, 71, 1, 224 https://doi.org/10.1016/0021-9991(87)90028-3
  23. Peters, N., 'Turbulent Combustion', 1st ed., Cambridge University Press, UK, Chap.3, 1999, pp. 233-234
  24. Wu, P.K., Kirkendall, K.A., Fuller, R.P., and Nejad, A.S., 'Spray Structures of Liquid Jets Atomized in Subsonic Crossflows', Journal of Propulsion and Power, Vol. 13, No.2, pp. 173-182, 1998