• 제목/요약/키워드: jet injection

검색결과 344건 처리시간 0.025초

가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구 (A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

PSP를 이용한 Cavity 후류의 전역적 압력분포 측정 (The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique)

  • 김기수;전영진;서형석;변영환;이재우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.317-321
    • /
    • 2007
  • PSP는 Pressure Sensitive Paint의 약자로 대기중의 산소량을 측정하여 전역적인 압력정보를 광학적으로 측정 할 수 있다. 본 연구에서는 PSP를 사용하여 jet injection 후류의 표면압력 분포를 알아보았다. 또한 Jet injection 5mm앞에 종횡비 1에서 4까지의 사각형 Cavity를 위치시켜 후류에 미치는 영향을 알아보았다. Jet injection 후류의 압력 분포는 Cavity의 전단층의 영향으로 Cavity가 없을 때와 비교해서 옆으로 넓게 퍼지면서 강도는 약해지는 모습을 보인다. 또한 Cavity의 종횡비가 커짐에 따라서 전단층의 크기가 커지고 그 영향이 커졌다. 측정된 압력은 압력공의 결과, CFD의 결과와 비교하였으며 근접한 값을 보였다.

  • PDF

Experimental Investigation of Supersonic Jet Noise Reduction Using Microjet Injection

  • Mamada, Ayumi;Watanabe, Toshinori;Uzawa, Seiji;Himeno, Takehiro;Oishi, Tsutomu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.622-627
    • /
    • 2008
  • Experiment of active noise control on supersonic jet noise was conducted by use of microjet injection. The microjets were injected to the shear layer of the main jet through 22 small holes at the lip of a rectangular nozzle. Based on the measurement of farfield sound pressure, it was found that the jet noise was effectively reduced by several dB(in some cases up to 10 dB). The power levels of all measurement points were also reduced by use of microjet injection. The microjet affected not only the broadband noise but also the screech tone noise. The sound pressure level, the frequency of the screech tone, and the structure of the jet could be changed by the microjet. Flow visualization with schlieren technique was also made to observe the effect of microjet on the flow field.

  • PDF

Fundamental study on gene transfer utilizing magnetic force and jet injector

  • Hasegawa, T.;Nakagam, H.;Akiyama, Y.;Nishijima, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.9-12
    • /
    • 2017
  • Recently, DNA vaccination is attracting attentions as a new therapeutic method for lifestyle diseases and autoimmune diseases. However, its clinical applications are limited because a safe and efficient gene transfer method has not been established yet. In this study, a new method of gene transfer was proposed which utilizes the jet injection and the magnetic transfection. The jet injection is a method to inject medical liquid by momentary high pressure without needle. The injected liquid diffuses in the bio tissue and the endocytosis is considered to be improved by the diffusion. The magnetic transfection is a method to deliver the conjugates of plasmid DNA and magnetic particles to the desired site by external magnetic field. It is expected that jet injection of the conjugates causes slight membrane disruptions and the traction of the conjugates by magnetic field induces the efficient gene transfer. In conclusion, the possibility of improvement of the gene expression by the combination of jet injection and magnetic transfection was confirmed.

분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구 (Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle)

  • 이관형;고정빈;구자예
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

유동해석을 통한 물 분사용 비데 노즐 설계 (DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS)

  • 최윤석;양승용;진성월
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.8-12
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

유동해석을 통한 물 분사용 비데 노즐 설계 (DESIGN OF WATER INJECTION NOZZLE OF BIDET WITH COMPUTATIONAL FLUID DYNAMICS)

  • 최윤석;양승용;진성월
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.68-71
    • /
    • 2007
  • An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.

  • PDF

Prevention of Oak Wilt by Tree Injection of Culture Suspension of an Antifungal Microorganism, Streptomyces blastmyceticus against Oak Wilt Fungus, Raffaelea quercus-mongolicae

  • Lee, Jin Heung;Hong, A Reum;Yun, Ji Ho;Seo, Sang Tae;Lee, Jong Kyu
    • Journal of Forest and Environmental Science
    • /
    • 제34권5호
    • /
    • pp.376-381
    • /
    • 2018
  • For the control of oak wilt caused by Raffaelea quercus-mongolicae, an antifungal microorganism, Streptomyces blastmyceticus, was used as a potential agent. Culture suspension of S. blastmyceticus was injected into Quercus mongolicae in the research forest of Kangwon National University by $ChemJet^{(R)}$ trunk injection and Macro-infusion at root flare injection. $Alamo^{(R)}$ (a.i., propiconazole 14.5%), a fungicide currently used for the control of oak wilt in USA, was also treated by both methods to compare the efficacy. For preventive efficacy, culture suspension of the pathogen was inoculated at 1 month after injection of either agent. Tested trees were cut at 3 months after treatment, stained with 1% Fuchsin acid, and then non-conductive area (NCA) and re-isolation frequency (RIF) of oak wilt fungus were compared among treatments. While NCA was the highest as 47.3% in pathogen only treatment, it was the lowest as 16.0% in sterilized water treatment by Macro-infusion. NCAs of Alamo treatment by Macro-infusion and ChemJet injection were 25.3% and 32.1%, respectively. NCA of S.blastmyceticus treatment by ChemJet injection was 32.3%, similar with Alamo treatment's by ChemJet injection. All treatments by either injection method showed significantly lower NCA compared to the pathogen only treatment. These results indicate that S. blastmyceticus injection shows the preventive efficacy against oak wilt disease by suppressing the growth of pathogen injected. NCA of Macro-infusion injection of sterilized water was lower as 16.0%, compared to 21.3% of ChemJet injection. It means that Macro-infusion is more effective in translocation of sterilized water than ChemJet injection by even distribution. RIF from wood discs of treated trees showed high in pathogen only treatment, but relatively low in S. blastmyceticus treatment. RIF results were correlated with NCA results. From the above results, it was confirmed that S. blastmyceticus showed preventive efficacy against oak wilt disease by ChemJet trunk or Macro-infusion at root flare injection.

액체 질소를 이용한 극저온 단일 제트 분사 시험 (Cryogenic Jet Injection Test Using Liquid Nitrogen)

  • 조성호;길태옥;박구정;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.597-600
    • /
    • 2010
  • 극저온 액체 질소 제트 유동의 아임계 및 초임계 특성을 파악하기 위한 실험을 수행하였다. 단일 제트 분사기를 고압 챔버 내에 장착하여 제트의 주위기체압력, 분사기 형상 및 유동 조건의 영향을 조사하였다. 실험 결과로부터 아임계 조건과 초임계 조건에서의 제트의 특성 변화를 관찰하였으며, 주위기체압력이 대기압일 경우 유동 내에 섭동이 발생함을 파악하였다. 분사기 형상에 따른 유동 변화 또한 파악하였다.

  • PDF

디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구 (A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet)

  • 염정국;김민철
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF