최근 교통 기술의 발전과 여가생활에 대한 관심이 늘어남에 따라 여행이 주요 여가 활동으로 자리 잡고 있다. 또한, 스마트폰이나 태블릿PC와 같이 GPS를 탑재한 모바일 기기 보급으로 인해 사용자의 위치를 실시간으로 수집하는 것이 가능해졌다. 이런 환경을 바탕으로 번거로운 여행 일정 계획을 대신 수립해주는 여행 일정 추천 시스템에 대한 연구가 활발하게 진행되었다. 그러나 기존의 연구들은 사용자들의 비용이나 시간에 대한 제약사항을 고려해 짧은 경로를 포함하는 여행 일정을 추천하거나 여행 목적지에서 가장 인기 있는 지역을 가장 많이 포함하는 일정을 추천하는 것을 목적으로 하기 때문에 개인의 만족도를 높이기 위한 개인화된 여행 일정 추천시스템에 대한 연구는 많지 않았다. 따라서 본 연구에서는 사용자들의 만족도를 높이기 위한 개인화 서비스 연구의 일환으로 그 동안 다른 연구에서는 간과되었던 사용자들의 체류시간을 고려한 여행 일정 추천 시스템을 제안한다.
Multi-day trip itinerary planning is complex and time consuming task, from selecting a list of worth visiting POIs to arranging them into an itinerary with various constraints and requirements. In this paper, we present CYTRIP, a multi-day trip itinerary planning system that engages human computation (i.e. crowd recommendation) to collaboratively recommend POIs by providing a shared workspace. CYTRIP takes input the collective intelligence of crowd (i.e. recommended POIs) to build a multi-day trip itinerary taking into account user's preferences, various time constraints and locations. Furthermore, we explain how we engage crowd in our system. The planning problem and domain are formulated as AI planning using PDDL3. The preliminary empirical experiments show that our domain formulation is applicable to both single-day and multi-day trip planning.
여행을 계획하는 일은 매우 복잡하고 많은 시간을 필요로 한다. 여행 계획을 정할 때에는 보통 관심 지점(point of interests, POIs)을 선택하고 그에 따른 다양한 제약 조건들을 고려하여 일정을 계획 한다. 관심 지점을 선정할 때 친구들에게 의견을 묻거나 인터넷에서 직접 정보를 찾으며 여행사의 도움을 받기도 한다. 하지만 이러한 방법들은 다음과 같은 어려움이 있다. 친구들에게 의견을 묻는 경우에는 친구들이 방문해 보지 못한 장소에 대한 정보를 얻기 어렵고 인터넷에서 정보를 찾는 경우에는 오히려 너무 많은 여행 정보들 때문에 필요한 정보를 탐색하고 정리하는데 많은 시간이 필요하며 여행사의 도움을 받을 때에는 여행 일정이 여행을 제공해주는 업체들 쪽으로 편중될 우려가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 여행 일정 계획 시스템인 CYTRIP을 제안한다. CYTRIP은 웹 기반의 추천 시스템으로써, 여행 정보를 공유할 수 있는 공간을 제공하고, 이를 통해 참여자들의 집단 지성에 따른 관심 지점을 추천 받는다. 그리고 PDDL3를 통해 추천된 지점들의 시간적, 공간적 제약조건 따라 여행 일정이 자동으로 생성되며 이렇게 생성된 일정은 지도 위에 표시되어 사용자에게 제공된다. 여행을 계획할 때에 정해진 기간 동안 모든 추천 관심지점을 방문할 수 없는 경우가 발생한다. 이러한 문제를 피하기 위해 정해진 시간에 방문 가능한 관심 지점들의 후보 집합을 선택하고 이 후보 집합들에 대한 여행 일정을 생성한다. 제안하는 시스템의 성능평가를 위해 사용자 평가를 실시하였다. 사용자 평가를 위해 한국관광공사에서 제공하는 데이터를 활용하였고 평가 결과 제안하는 시스템이 여러 참여자들의 집단 지성을 통해 여행 일정을 계획하는데 유용하다는 것을 알 수 있었다.
Journal of information and communication convergence engineering
/
제18권2호
/
pp.123-131
/
2020
After observing that most tourists plan to complete their visits to multiple cultural heritage sites within one day, we surmised that for many museum visitors, the foremost thought is with regard to the amount of time is to be spent at each location and how they can maximize their enjoyment at a site while still balancing their travel itinerary? Recommendation systems in e-commerce are built on knowledge about the users' previous purchasing history; recommendation systems for museums, on the other hand, do not have an equivalent data source available. Recent solutions have incorporated advanced technologies such as algorithms that rely on social filtering, which builds recommendations from the nearest identified similar user. Our paper proposes a different approach, and involves providing dynamic recommendations that deploy social filtering as well as content-based filtering using term frequency-inverse document frequency. The main challenge is to overcome a cold start, whereby no information is available on new users entering the system, and thus there is no strong background information for generating the recommendation. In these cases, our solution deploys statistical methods to create a recommendation, which can then be used to gather data for future iterations. We are currently running a pilot test at Chao Samphraya national museum and have received positive feedback to date on the implementation.
최근 수요가 많아진 여행 일정 추천 서비스와 관련하여, 이전 연구에서는 소셜 빅데이터 분석을 통해 관광지, 맛집, 숙소 등을 포함한 플레이스들의 대중적인 인기 정도를 정량화하고, 분석결과를 기반으로 여행 스케줄을 생성하기 위한 방법을 소개하였다. 그러나 생성된 스케줄은 관광지를 최단 거리로 연결한 이동 경로 위주로 구성되었으며, 여행 일자별로 맛집이나 숙소 정보를 포함한 구체적인 일정 정보는 제공하지 않았다. 본 논문에서는 소셜 빅데이터를 기반으로 생성된 여행 스케줄에 시나리오 템플릿을 이용하여 상세 이동 경로를 구성하기 위한 알고리즘을 제시하고, 이를 구현한 프로토타입 시스템에 대해 소개한다. 제안 시스템은 플레이스 정보 수집, 플레이스별 인기점수 산정, 최단경로 여행 일정 생성, 일자별 상세 스케줄 생성, UI 시각화 등의 모듈로 구성되며, 경상남도 내 63,000여 개의 플레이스를 대상으로 수집된 리뷰를 바탕으로 진행된 실험을 통해 제안 시스템의 효용성을 입증하였다.
최근 정부는 창조경제라는 패러다임에 따라 다양한 분야의 공공데이터를 개방하고 여러 종류의 대국민 서비스를 구축하는 등 공공데이터 활용을 통한 가치창출에 역점을 두고 있다. 본 논문에서는 여행에 관한 공공데이터와 사용자 정보를 융합하여 사용자에게 맞춤형 여행 정보를 추천하는 시스템을 구현하였다. 본 시스템에서는 사례기반추론(CBR) 방식을 이용하여 사용자별 맞춤형 정보 추천이 가능하도록 하였다. 본 시스템은 사용자 중심의 여행 정보를 제공한다는 측면에서 기존의 여행 시스템들과 차별화된다고 할 수 있으며, 턴키(Turn-key) 방식의 콘텐츠 제공으로 사용자의 편의성을 극대화할 수 있는 유용한 도구로 활용될 수 있을 것으로 판단된다. 본 연구가 공공데이터의 성공적인 활용 사례가 되기를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.