• Title/Summary/Keyword: iterative schemes

Search Result 170, Processing Time 0.028 seconds

Estimation of soft decision channel gain for coded MIMO system (부호화된 MIMO 시스템에서 연판정 채널 이득값의 계산)

  • Kim, Young-Min;Shang, Ping Ping;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.577-586
    • /
    • 2011
  • Modem digital communication systems are required to use forward error correction (FEC) codes to combat inevitable channel impairment. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection (SDD) information, are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of soft decision detection information. In order to use FEC codes with iterative decoding for Multi-Input Multi-Output (MIMO) system, reliable soft decision channel gain should be provided. In this paper, we investigate efficient SDD methods for turbo-coded MIMO system, and derive the corresponding formulas of SDD for various MIMO detection schemes. We present simulation results of the derived SDD schemes for turbo-coded MIMO systems, and show that the presented results almost approximate to maximum likelihood detection performance with much less computational load.

A Study on Introducing Fractions in Mathematics Textbooks: Focused on Stages of Units Coordination (초등학교 수학 교과서의 분수 도입 방법에 대한 고찰: 단위 조정 단계를 중심으로)

  • Lee, Jiyoung
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.23 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • This study examines the introduction of fractions in the third grade mathematics textbooks focusing on stages of units coordination and suggests alternative activities to help students develop their understanding of fractions. As results, the sessions of introduction units in textbooks was well organized to allow students to construct more extensive fraction schemes (i.e., Part-whole fraction scheme → Partitive unit fraction scheme → Partitive fraction scheme). However, most of the activities in textbooks were related to stages 1 and 2 of units coordination. In particular, the operations and partitioning schemes (i.e., equi-partitioning and splitting schemes), which are key to the development of students' fraction knowledge, were not explicitly revealed. Fraction schemes also did not extend to the Iterative fraction scheme, which is central to the construction of improper fractions. Based on these results, this study is expected to provide implications for the introduction of fractions in textbooks focusing on stages of units coordination to teachers and textbook developers.

  • PDF

Spectral Analysis Method to Eliminate Spurious in FMICW HRR Millimeter-Wave Seeker (주파수 변조 단속 지속파를 이용하는 고해상도 밀리미터파 탐색기의 스퓨리어스 제거를 위한 스펙트럼 분석 기법)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.85-95
    • /
    • 2012
  • In this thesis, we develop a spectral analysis scheme to eliminate the spurious peaks generated in HRR Millimeterwave Seeker based on FMICW system. In contrast to FMCW system, FMICW system generates spurious peaks in the spectrum of its IF signal, caused by the periodic discontinuity of the signal. These peaks make the accuracy of the system depend on the previously estimated range if a band pass filter is utilized to eliminate them and noise floor go to high level if random interrupted sequence is utilized and in case of using staggering process, we must transmit several waveforms to obtain overlapped information. Using the spectral analysis one of the schemes such as IAA(Iterative Adaptive Approach) and SPICE(SemiParametric Iterative Covariance-based Estimation method) which were introduced recently, the spurious peaks can be eliminated effectively. In order to utilize IAA and SPICE, since we must distinguish between reliable data and unreliable data and only use reliable data, STFT(Short Time Fourier Transform) is applied to the distinguishment process.

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

Finite-horizon Tracking Control for Repetitive Systems with Uncertain Initial Condition (불확실한 초기치를 갖는 반복시스템에 대한 유한구간 추종제어)

  • Choi, Yun-Jong;Yun, Sung-Wook;Lee, Chang-Hee;Cho, Jae-Young;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.297-298
    • /
    • 2007
  • Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively and are widely spread in industrial fields. Hence, those systems have been of much interests by many researchers, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities. A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

  • PDF

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.

Performance analysis of turbo codes based on underwater experimental data (수중 실험 데이터 기반 터보 부호 성능 분석)

  • Sung, Ha-Hyun;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • The performance of underwater acoustic communication systems is sensitive to inter-symbol interference caused by delay spread developed from multipath signal propagation. The multipath nature of underwater channels causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Of the various iterative coding schemes, turbo code and convolutional code based on the BCJR algorithm have recently dominated this application. In this study, the performance of iterative codes based on turbo equalizers with equivalent coding rates and similar code word lengths were analyzed. Underwater acoustic communication system experiments using these two coding techniques were conducted on Kyeong-chun Lake in Munkyeong City. The distance between the transmitter and receiver was 400 m, and the data transfer rate was 1 Kbps. The experimental results revealed that the performance of turbo codes is better for channeling than that of convolutional codes that use a BCJR decoding algorithm.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Radius Optimization for Efficient List Sphere Decoding (효율적인 리스트 구복호기 검출방식을 위한 구반경의 최적화에 관한 연구)

  • Lee, Jae-Seok;Lee, Byung-Ju;Shim, Byong-Hyo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.742-748
    • /
    • 2010
  • Instead of using sphere decoding, list sphere decoding (LSD) has been introduced to increase the reliability of log-likelihood ratio (LLR) in recent soft decoding schemes employing iterative detection and decoding (IDD). Although LSD provides improved performance, it does not obtain complexity gain due to signal-to-noise ratio (SNR) increment as it detects large number of lattice points. Especially, its inefficient scenario arises when it has to search for lattice points which have small affect for obtaining LLR with high reliability. In this paper, we study an efficient algorithm to remove such lattice points, which results in complexity reduction based on radius optimization.