• Title/Summary/Keyword: iterative processes

Search Result 133, Processing Time 0.041 seconds

Optimal area for rectangular isolated footings considering that contact surface works partially to compression

  • Vela-Moreno, Victor Bonifacio;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Martinez-Aguilar, Carmela
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.561-573
    • /
    • 2022
  • This paper presents a new model to obtain the minimum area of the contact surface for rectangular isolated footings, considering that the contact surface works partially to compression (a part of the contact surface of the footing is subjected to compression and the other is not in compression or tension). The methodology is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My". This document presents the simplified and precise equations of the four possible cases of footing subjected to uniaxial bending and five possible cases of footing subjected to biaxial bending. The current model considers the contact area of the footing that works totally in compression, and other models consider the contact area that works partially under compression and these are developed by very complex iterative processes. Numerical examples are presented to obtain the minimum area of rectangular footings under an axial load and moments in two directions, and the results are compared with those of other authors. The results show that the new model presents smaller areas than the other authors presented.

Development of the ISEP Based on Systems Engineering (시스템엔지니어링을 적용한 ISEP 개발에 관한 연구)

  • Byun, BoSuk;Choi, YoChul;Park, Young T.
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.725-735
    • /
    • 2013
  • Purpose: The purpose of this study is to propose an Integrated Safety Evaluation Process (ISEP) that can enhances the safety aspect of the safety-critical system. This process utilizes the advantages of the iterative Systems Engineering process combined with the safety assessment process that is commonly and well defined in many standards and/or guidelines for railway, aerospace, and other safety-critical systems. Methods: The proposed process model is based on the predefined system lifecycle, in each phase of which the appropriate safety assessment activities and the safety data are identified. The interfaces between Systems Engineering process and the safety assessment process are identified before the two processes are integrated. For the integration, the elements at lower level of Systems Engineering process are combined with the relevant elements of safety assessment process. This combined process model is represented as Enhanced Functional Flow Block Diagram (EFFBD) by using CORE(R) that is commercial modelling tool. Results: The proposed model is applied to the lifecycle and management process of the United States aircraft system. The US aircraft systems engineering process are composed of twelve key elements, among which the requirements management, functional analysis, and Synthesis processes are considered for examplenary application of the proposed process. To synchronize the Systems Engineering process and the safety assessment process, the Systems Engineering milestones are utilized, where the US aircraft system has thirteen milestones. Taking into account of the nine steps in the maturity level, the integrated process models are proposed in some phases of lifecycle. The flows of processes are simulated using CORE(R), confirming the flows are timelined without any conflict between the Systems Engineering process and the safety assessment process. Conclusion: ISEP allows the timeline analysis for identifying activity and data flows. Also, the use of CORE(R) is shown to be effective in the management and change of process data, which helps for the ISEP to apply for the development of safety critical system. In this study, only the first few phases of lifecyle are considered, however, the implementation through operation phases can be revised by combining the elements of safety activities regarding those phases.

Efficient programmable power-of-two scaler for the three-moduli set {2n+p, 2n - 1, 2n+1 - 1}

  • Taheri, MohammadReza;Navi, Keivan;Molahosseini, Amir Sabbagh
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.596-607
    • /
    • 2020
  • Scaling is an important operation because of the iterative nature of arithmetic processes in digital signal processors (DSPs). In residue number system (RNS)-based DSPs, scaling represents a performance bottleneck based on the complexity of intermodulo operations. To design an efficient RNS scaler for special moduli sets, a body of literature has been dedicated to the study of the well-known moduli sets {2n - 1, 2n, 2n + 1} and {2n, 2n - 1, 2n+1 - 1}, and their extension in vertical or horizontal forms. In this study, we propose an efficient programmable RNS scaler for the arithmetic-friendly moduli set {2n+p, 2n - 1, 2n+1 - 1}. The proposed algorithm yields high speed and energy-efficient realization of an RNS programmable scaler based on the effective exploitation of the mixed-radix representation, parallelism, and a hardware sharing technique. Experimental results obtained for a 130 nm CMOS ASIC technology demonstrate the superiority of the proposed programmable scaler compared to the only available and highly effective hybrid programmable scaler for an identical moduli set. The proposed scaler provides 43.28% less power consumption, 33.27% faster execution, and 28.55% more area saving on average compared to the hybrid programmable scaler.

Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences (단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측)

  • Chi, Sang-mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1816-1821
    • /
    • 2016
  • Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.

Analysis of Output Irregularity from the Transient Behavior of Bundle in a Flow Field (유동계 내 집속체의 과도적 거동에 따른 출력 불균제 해석)

  • Huh Y.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.965-968
    • /
    • 2005
  • Roll drafting operation causes variations in the linear density of bundles because the bundle flow cannot be controlled completely by roll pairs. Defects occurring in this operation bring about many problems successively in the next processes. In this paper, we attempt to analyze the draft dynamics and the linear density irregularity based on the governing equation of a bundle motion that has been suggested in our previous studies. For analyzing the dynamic characteristics of the roll drafting operation, it is indispensable to investigate a transient state in time domain before the bundle flux reaches a steady state. However, since governing equations of bundle flow consisting of continuity and motion equations turn out to be nonlinear, and coupled between variables, the solutions for a transient state cannot be obtained by an analytical method. Therefore, we use the Finite Difference Method(FDM), particularly, the FTBS(Forward-Time Backward-Space) difference method. Then, the total equations system yields to an algebraic equations system and is solved under given initial and boundary conditions in an iterative fashion. From the simulation results, we confirm that state variables show different behavior in the transient state; e.g., the velocity distribution in the flow field changes more quickly the linear density distribution. During a transient flow in a drafting zone, the output irregularity is influenced differently by the disturbances, e.g., the variation in input bundle thickness, the drafting speed, and the draft ratio.

  • PDF

Performance Comparison of Fast Distributed Video Decoding Methods Using Correlation between LDPCA Frames (LDPCA 프레임간 상관성을 이용한 고속 분산 비디오 복호화 기법의 성능 비교)

  • Kim, Man-Jae;Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.31-39
    • /
    • 2012
  • DVC(Distributed Video Coding) techniques have been attracting a lot of research works since these enable us to implement the light-weight video encoder and to provide good coding efficiency by introducing the feedback channel. However, the feedback channel causes the decoder to increase the decoding complexity and requires very high decoding latency because of numerous iterative decoding processes. So, in order to reduce the decoding delay and then to implement in a real-time environment, this paper proposes several parity bit estimation methods which are based on the temporal correlation, spatial correlation and spatio-temporal correlations between LDPCA frames on each bit plane in the consecutive video frames in pixel-domain Wyner-Ziv video coding scheme and then the performances of these methods are compared in fast DVC scheme. Through computer simulations, it is shown that the adaptive spatio-temporal correlation-based estimation method and the temporal correlation-based estimation method outperform others for the video frames with the highly active contents and the low active contents, respectively. By using these results, the proposed estimation schemes will be able to be effectively used in a variety of different applications.

Development of an Object-oriented Finite Element Model through Iterative Method Ensuring Independency of Elements (요소 독립성이 유지되는 반복해법에 의한 객체지향 유한요소모델 개발)

  • Lee, Han-Ki;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.115-125
    • /
    • 2012
  • Application of the Object-oriented Programming (OOP) method to the Finite Element Model (FEM) program has various strengths including the features of encapsulation, polymorphism and inheritance. However, this technique should be based upon a premise that the independency of the object method and data to be used is guaranteed. By attempting to apply the OOP to the FEM, existing researches go against the independency of the OOP which is an essential feature of the method. The reason is this: existing researches apply the OOP to modules in accordance with analysis procedures, although the data to be used is classified as an element unit in the FEM. Therefore, the required independency cannot be maintained as whole stiffness matrices and boundary conditions are combined together. Also, solutions are sought from analysis module after data is regrouped at the pre-processor, and their results are analyzed during the post-processor. As this is similar to a batch processing, it cannot use data at analysis, and recalculation should be done from the beginning if any condition is changed after the analysis is complete, which are limitations of the existing researches. This research implemented the Object-orientation of elements so that the three features of the OOP (i.e. encapsulation, polymorphism and inheritance) can be guaranteed and their independency maintained as a result. For this purpose, a model called 'Object-oriented Finite element Model ensuring the Independency of Elements (OFMIE)', which enables the analysis of targets through mutual data exchanges within instance, was developed. In conclusion, the required independency was achieved in the instance of the objected elements and the analysis results of previous conditions could be used for the analysis after changes. The number of repetitive calculations was reduced by 75 per cent through this gradual analysis processes.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

Performance of Turbo Coded OFDM Systems in W-CDMA Wireless Communication Channel (W-CDMA 무선통신 채널에서 터보 부호를 적용한 OFDM 시스템의 성능 분석)

  • Shin, Myung-Sik;Yang, Hae-Sool
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.183-191
    • /
    • 2010
  • In the recent digital communication systems, the performance of Turbo Code used as the error correction coding method depends on the interleaver size influencing the free distance determination and the iterative decoding algorithms of the turbo decoder. However, some iterations are needed to get a better performance, but these processes require a large time delay. Recently methods of reducing the number of iteration have been studied without degrading original performance. In this paper, the new method of combining ME (Mean Estimate) stopping criterion with SDR (sign difference ratio) stopping criterion among previous stopping criteria is proposed, and the fact of compensating each method's missed detection is verified. Faster decoding is realized that about 1~2 time iterations to reduced through adopting this method into serially concatenated both decoders. System Environments were assumed W-CDMA forward link system with intense MAI (multiple access interference).

Design of High Speed Binary Arithmetic Encoder for CABAC Encoder (CABAC 부호화기를 위한 고속 이진 산술 부호화기의 설계)

  • Park, Seungyong;Jo, Hyungu;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.774-780
    • /
    • 2017
  • This paper proposes an efficient binary arithmetic encoder hardware architecture for CABAC encoding, which is an entropy coding method of HEVC. CABAC is an entropy coding method that is used in HEVC standard. Entropy coding removes statistical redundancy and supports a high compression ratio of images. However, the binary arithmetic encoder causes a delay in real time processing and parallel processing is difficult because of the high dependency between data. The operation of the proposed CABAC BAE hardware structure is to separate the renormalization and process the conventional iterative algorithm in parallel. The new scheme was designed as a four-stage pipeline structure that can reduce critical path optimally. The proposed CABAC BAE hardware architecture was designed with Verilog HDL and implemented in 65nm technology. Its gate count is 8.07K and maximum operating speed of 769MHz. It processes the four bin per clock cycle. Maximum processing speed increased by 26% from existing hardware architectures.