Acknowledgement
The authors would like to thank Dr. B. Yoberd for his literature contributions.
References
- C. -H. Chang et al., Residue number systems: A new paradigm to datapath optimization for low-power and high-performance digital signal processing applications, IEEE Circ. Syst. Mag. 15 (2015), no. 4, 26-44. https://doi.org/10.1109/MCAS.2015.2484118
- G. L. Bernocchi et al., Low-power adaptive filter based on RNS components, in Proc. IEEE Int. Symp. Circuits Syst. (New Orleans, LA, USA), May (2007), pp. 3211-3214.
-
J. Y. S. Low, T. F. Tay, and C.-H. Chang, A unified
${2^n-1,\;2^n,\;2^n+1}$ RNS scaler with dual scaling constants, in Proc. IEEE Asia Pacific Conf. Circuits Syst. (Kaohsiung, Taiwan), Dec. 2012, pp. 296-299. -
C. -H. Chang and J. Y. S. Low, Simple, fast, and exact RNS scaler for the three-moduli set
${2^n-1,\;2^n,\;2^n+1}$ , IEEE Trans. Circuits Syst. I 58 (2011), no. 11, 2686-2697. https://doi.org/10.1109/TCSI.2011.2142950 -
L. Sousa,
$2^n$ RNS scalers for extended 4-moduli sets, IEEE Trans. Comput. 64 (2015), no. 12, 3322-3334. https://doi.org/10.1109/TC.2015.2401026 - Z. D. Ulman and M. Czyzak, Highly parallel, fast scaling of numbers in nonredundant residue arithmetic, IEEE Trans. Signal Process. 46 (1998), no. 2, 487-496. https://doi.org/10.1109/78.655432
- Z. Ulman, M. Czyzak, and J. Zurada, Effective RNS scaling algorithm with the Chinese remainder theorem decomposition, in Proc. IEEE Pacific Rim Conf. Commun. Comput. Signal Process. (Victoria, Canada), May 1993, pp. 528-531.
- M. Griffin, F. Taylor, and M. Sousa, New scaling algorithms for the Chinese remainder theorem, in Proc. Twenty-Second Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), 1988, pp. 375-378.
- M. Griffin, M. Sousa, and F. Taylor, Efficient scaling in the residue number system, in Proc. Int. Conf. Acoustics, Speech, Signal Process. (Glasgow, UK), May 1989, pp. 1075-1078.
- M. A. P. Shenoy and R. Kumaresan, A fast and accurate RNS scaling technique for high speed signal processing, IEEE Trans. Signal Process. 37 (1989), no. 6, 929-937. https://doi.org/10.1109/ASSP.1989.28063
- Y. Kong and B. Phillips, Fast scaling in the residue number system, IEEE Trans. VLSI Syst. 17 (2009), no. 3, 443-447. https://doi.org/10.1109/TVLSI.2008.2004550
- F. Barsi and M. C. Pinotti, Fast base extension and precise scaling in RNS for look-up table implementations, IEEE Trans. Signal process. 43 (1995), no. 10, 2427-2430. https://doi.org/10.1109/78.469842
- M. Dasygenis et al,, A full-adder-based methodology for the design of scaling operation in residue number system, IEEE Trans. Circuits Syst. I 55 (2008), no. 2, 546-558. https://doi.org/10.1109/TCSI.2007.913608
-
S. Ma et al., A
$2^n$ scaling scheme for signed RNS integers and its VLSI implementation, Sci. China Inf. Sci. 53 (2010), no. 1, 203-212. https://doi.org/10.1007/s11432-010-0015-y - A. García and A. Lloris, A look-up scheme for scaling in the RNS, IEEE Trans. Comput. 48 (1999), no. 7, 748-751. https://doi.org/10.1109/12.780883
- A. Garcia and A. Lloris, RNS scaling based on pipelined multipliers for prime moduli, in Proc. IEEE Workshop Signal Process. Syst. SIPS Design Implementation (Cambridge, MA, USA), Oct. 1998, pp. 459-468.
- N. Burgess, Scaling an RNS number using the core function, in Proc. IEEE Symp. Comput. Arithmetic (Santiago de Compostela, Spain), June 2003, pp. 262-269.
-
T. F. Tay, C.-H. Chang, and J. Y. S. Low, Efficient VLSI implementation of
$2^n$ scaling of signed integer in RNS${2^n-1,\;2^n,\;2^n+1}$ , IEEE Trans. VLSI Syst. 21 (2012), no. 10, 1936-1940. -
J. Y. S. Low and C.-H. Chang, A VLSI efficient programmable power- of-two scaler for
${2^n-1,\;2^n,\;2^n+1}$ RNS, IEEE Trans. Circuits Syst. I 59 (2012), no. 12, 2911-2919. https://doi.org/10.1109/TCSI.2012.2206491 -
A. Hiasat, Efficient RNS scalers for the extended three-moduli set
${2^n-1,\;2^{n+p},\;2^n+1}$ , IEEE Trans. Comput. 66 (2017), no. 7, 1253-1260. https://doi.org/10.1109/TC.2017.2652474 -
W. Wang et al., A high-speed residue-to-binary converter for three-moduli
$(2^k,\;2^{k-1},\;2^{k-1}-1)$ RNS and a scheme for its VLSI implementation, IEEE Trans. Circuits Syst. II 47 (2000), no. 12, 1576-1581. https://doi.org/10.1109/82.899659 -
P. V. A. Mohan, RNS-to-binary converter for a new three-moduli set
${2^{n+1}-1,\;2^n,\;2^n-1}$ , IEEE Trans. Circuits Syst. II 54 (2007), no. 9, 775-779. https://doi.org/10.1109/TCSII.2007.900844 -
A. Hiasat, An efficient reverse converter for the three-moduli set
$(2^{n+1}-1,\;2^n,\;2^n-1)$ , IEEE Trans. Circuits Syst. II 64 (2016), no. 8, 962-966. https://doi.org/10.1109/TCSII.2016.2608335 -
M. M. Latha, R. R. Rachh, and P. V. A. Mohan, RNS-to-binary converters for a three-moduli set
${2^{n-1}-1,\;2^n-1,\;2^{n+k}$ , IETE J. Edu. 58 (2017), no. 1, 20-28. https://doi.org/10.1080/09747338.2017.1317040 -
A. S. Molahosseini et al., Efficient MRC-based residue to binary converters for the new moduli sets
${2^{2n},\;2^n-1,\;2^{n+1}-1}$ and${2^{2n},\;2^n-1,\;2^{n-1}-1}$ , IEICE Trans. Inf. Syst. 92 (2009), no. 9, 1628-1638. https://doi.org/10.1587/transinf.e92.d.1628 -
M. Xu, Z. Bian, and R. Yao, Fast sign detection algorithm for the RNS moduli set
${2^{n+1}-1,\;2^n-1,\;2^n}$ , IEEE Trans. VLSI Syst. 23 (2014), no. 2, 379-383. -
V. Niras and Y. Kong, Fast sign-detection algorithm for residue number system moduli set
${2^n-1,\;2^n,\;2^{n+1}-1}$ , IET Comput. Digital Tec. 10 (2016), no. 2, 54-58. https://doi.org/10.1049/iet-cdt.2015.0050 -
S. Kumar and C.-H. Chang, A VLSI-efficient signed magnitude comparator for
${2^n-1,\;2^n,\;2^{n+1}-1}$ RNS, EE Int. Symp. Circuits Syst. (Montreal, Canada), May 2016, 1966-1969. - P. Patronik and S. J. Piestrak, Hardware/software approach to designing low-power RNS-enhanced arithmetic units, IEEE Trans. Circuits Syst. I 64 (2017), no. 5, 1031-1039. https://doi.org/10.1109/TCSI.2017.2669108
-
A. Hiasat, New residue number system scaler for the three-moduli set
${2^{n+1}-1,\;2^n,\;2^n-1}$ , Computers 7 (2018), no. 3, 46. https://doi.org/10.3390/computers7030046 -
A. Hiasat and L. Sousa, On the design of RNS inter-modulo processing units for the arithmetic-friendly moduli sets
${2^{n+k},\;2^n-1,\;2^{n+1}-1}$ , Comput. J. 62 (2018), no. 2, 292-300. - S. J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders, IEEE Trans. Comput. 43 (1994), no. 1, 68-77. https://doi.org/10.1109/12.250610
-
H. T. Vergos and G. Dimitrakopoulos, On modulo
$2^n+1$ adder design, IEEE Trans. Comput. 61 (2010), no. 2, 173-186. https://doi.org/10.1109/TC.2010.261 - A. E. Zarandi et al., Reverse converter design via parallel-prefix adders: Novel components, methodology, and implementations, IEEE Trans. VLSI Syst. 23 (2014), no. 2, 374-378.
- A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans. Comput. 42 (1993), no. 10, 1163-1170. https://doi.org/10.1109/12.257703
-
L. Kalampoukas et al., High-speed parallel-prefix module
$2^n-1$ adders, IEEE Trans. Comput. 49 (2000), no. 7, 673-680. https://doi.org/10.1109/12.863036 -
H. T. Vergos, C. Efstathiou, and D. Nikolos, Diminished-one modulo
$2^n+1$ adder design, IEEE Trans. Comput. 51 (2002), no. 12, 1389-1399. https://doi.org/10.1109/TC.2002.1146705 -
R. Muralidharan and C.-H. Chang, Area-power efficient modulo
$2^n-1$ and modulo$2^n+1$ multipliers for${2^n-1,\;2^n,\;2^n+1} $ based RNS, IEEE Trans. Circuits Syst. I 59 (2012), no. 10, 2263-2274. https://doi.org/10.1109/TCSI.2012.2185334 - R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis, PhD Thesis, Swiss Federal Institute of Technology, Zurich, 1998.