• 제목/요약/키워드: iterative equation

검색결과 321건 처리시간 0.023초

CONVEX SOLUTIONS OF THE POLYNOMIAL-LIKE ITERATIVE EQUATION ON OPEN SET

  • Gong, Xiaobing
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.641-651
    • /
    • 2014
  • Because of difficulty of using Schauder's fixed point theorem to the polynomial-like iterative equation, a lots of work are contributed to the existence of solutions for the polynomial-like iterative equation on compact set. In this paper, by applying the Schauder-Tychonoff fixed point theorem we discuss monotone solutions and convex solutions of the polynomial-like iterative equation on an open set (possibly unbounded) in $\mathbb{R}^N$. More concretely, by considering a partial order in $\mathbb{R}^N$ defined by an order cone, we prove the existence of increasing and decreasing solutions of the polynomial-like iterative equation on an open set and further obtain the conditions under which the solutions are convex in the order.

EXISTENCE AND MANN ITERATIVE METHODS OF POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Hao, Jinbiao;Kang, Shin Min
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.299-309
    • /
    • 2010
  • In this paper, we study the first order nonlinear neutral difference equation: $${\Delta}(x(n)+px(n-{\tau}))+f(n,x(n-c),x(n-d))=r(n),\;n{\geq}n_0$$. Using the Banach fixed point theorem, we prove the existence of bounded positive solutions of the equation, suggest Mann iterative schemes of bounded positive solutions, and discuss the error estimates between bounded positive solutions and sequences generated by Mann iterative schemes.

Fast Iterative Solving Method of Fuzzy Relational Equation and its Application to Image Compression/Reconstruction

  • Nobuhara, Hajime;Takama, Yasufumi;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.38-42
    • /
    • 2002
  • A fast iterative solving method of fuzzy relational equation is proposed. It is derived by eliminating a redundant comparison process in the conventional iterative solving method (Pedrycz, 1983). The proposed method is applied to image reconstruction, and confirmed that the computation time is decreased to 1 / 40 with the compression rate of 0.0625. Furthermore, in order to make any initial solution converge on a reconstructed image with a good quality, a new cost function is proposed. Under the condition that the compression rate is 0.0625, it is confirmed that the root mean square error of the proposed method decreases to 27.34% and 86.27% compared with those of the conventional iterative method and a non iterative image reconstruction method, respectively.

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

NEW ITERATIVE PROCESS FOR THE EQUATION INVOLVING STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Zeng, Ling-Yan;Li, Jun;Kim, Jong-Kyu
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.861-870
    • /
    • 2007
  • In this paper, under suitable conditions, we show that the new class of iterative process with errors introduced by Li et al converges strongly to the unique solution of the equation involving strongly accretive operators in real Banach spaces. Furthermore, we prove that it is equivalent to the classical Ishikawa iterative sequence with errors.

A QUADRATICALLY CONVERGENT ITERATIVE METHOD FOR NONLINEAR EQUATIONS

  • Yun, Beong-In;Petkovic, Miodrag S.
    • 대한수학회지
    • /
    • 제48권3호
    • /
    • pp.487-497
    • /
    • 2011
  • In this paper we propose a simple iterative method for finding a root of a nonlinear equation. It is shown that the new method, which does not require any derivatives, has a quadratic convergence order. In addition, one can find that a hybrid method combined with the non-iterative method can further improve the convergence rate. To show the efficiency of the presented method we give some numerical examples.

최적제어이론과 관련된 "리카티" 미분방정식의 수식해 (Numerical Solution of Riccati Differential Equation in Optimal Control Theory)

  • 경규학
    • 한국경영과학회지
    • /
    • 제9권2호
    • /
    • pp.28-33
    • /
    • 1984
  • In this paper some procedures are given whereby an analytic solution may be found for the Riccati differential equation and algebraic Riccati equation in optimal control theory. Some iterative techniques for solving these equations are presented. Rate of convergence and initialization of the iterative processes are discussed.

  • PDF

A GENERAL FORM OF MULTI-STEP ITERATIVE METHODS FOR NONLINEAR EQUATIONS

  • Oh, Se-Young;Yun, Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.773-781
    • /
    • 2010
  • Recently, Yun [8] proposed a new three-step iterative method with the fourth-order convergence for solving nonlinear equations. By using his ideas, we develop a general form of multi-step iterative methods with higher order convergence for solving nonlinear equations, and then we study convergence analysis of the multi-step iterative methods. Lastly, some numerical experiments are given to illustrate the performance of the multi-step iterative methods.

ITERATIVE SOLUTIONS TO NONLINEAR EQUATIONS OF THE ACCRETIVE TYPE IN BANACH SPACES

  • Liu, Zeqing;Zhang, Lili;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • 제17권2호
    • /
    • pp.265-273
    • /
    • 2001
  • In this paper, we prove that under certain conditions the Ishikawa iterative method with errors converges strongly to the unique solution of the nonlinear strongly accretive operator equation Tx=f. Related results deal with the solution of the equation x+Tx=f. Our results extend and improve the corresponding results of Liu, Childume, Childume-Osilike, Tan-Xu, Deng, Deng-Ding and others.

  • PDF

수정완경사방정식을 위한 반복기법의 효율성 비교 (Efficient Iterative Solvers for Modified Mild Slope Equation)

  • 윤종태;박승민
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.61-66
    • /
    • 2006
  • Two iterative solvers are applied to solve the modified mild slope equation. The elliptic formulation of the governing equation is selected for numerical treatment because it is partly suited for complex wave fields, like those encountered inside harbors. The requirement that the computational model should be capable of dealing with a large problem domain is addressed by implementing and testing two iterative solvers, which are based on the Stabilized Bi-Conjugate Gradient Method (BiCGSTAB) and Generalized Conjugate Gradient Method (GCGM). The characteristics of the solvers are compared, using the results for Berkhoff's shoal test, used widely as a benchmark in coastal modeling. It is shown that the GCGM algorithm has a better convergence rate than BiCGSTAB, and preconditioning of these algorithms gives more than half a reduction of computational cost.