• Title/Summary/Keyword: isotope measurement

Search Result 130, Processing Time 0.029 seconds

Complete Simultaneous Analysis of Uranium Isotopes in NUSIMEP-7 Microparticles Using SEM-TIMS

  • Park, Jong-Ho;Jeong, Kahee
    • Mass Spectrometry Letters
    • /
    • v.7 no.3
    • /
    • pp.64-68
    • /
    • 2016
  • Scanning electron microscopy combined with thermal ionization mass spectrometry (SEM-TIMS) was used to determine the precise isotope ratios of ultra-trace levels of uranium contained in individual microparticles. An advanced multiple ion counter system consisting of three secondary ion multipliers and two compact discrete dynodes was used for complete simultaneous ion detection. For verification purposes, using TIMS with complete simultaneous measurement, isotopes were analyzed in 5 pg of uranium of a certified reference material. A microprobe in the SEM was used to transfer individual particles from a NUSIMEP-7 sample to TIMS filaments, which were then subjected to SEM-TIMS and complete simultaneous measurement. The excellent agreement in the resulting uranium isotope ratios with the certified NUSIMEP-7 values shows the validity of SEM-TIMS with complete simultaneous measurement for the analysis of uranium isotopes in individual particles. Further experimental study required for investigation of simultaneous measurement using the advanced multiple ion counter system is presented.

Isotope Measurement of Uranium at Ultratrace Levels Using Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Oh, Seong-Y.;Lee, Seon-A.;Park, Jong-Ho;Lee, Myung-Ho;Song, Kyu-Seok
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.54-57
    • /
    • 2012
  • Mass spectrometric analysis was carried out using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for the precise and accurate determination of the isotope ratios of ultratrace levels of uranium dissolved in 3% $HNO_3$. We used the certified reference material (CRM) 112-A at a trace level of 100 pg/mL for the uranium isotopic measurement. Multiple collectors were utilized for the simultaneous measurement of uranium isotopes to reduce the signal uncertainty due to variations in the ion beam intensity over time. Mass bias correction was applied to the measured U isotopes to improve the precision and accuracy. Furthermore, elemental standard solution with certified values of platinum, iridium, gold, and thallium dissolved in 3% $HNO_3$ were analyzed to investigate the formation rates of the polyatomic ions of $Ir^{40}$ $Ar^+$, $Pt^{40}$ $Ar^+$, $Tl^{40}$ $Ar^+$, $Au^{40}$ $Ar^+$ for the concentration range of 50-400 pg/mL. Those polyatomic ions have mass-to-charge ratios in the 230-245 m/z region that it would contribute to the increase of background intensity of uranium, thorium, plutonium, and americium isotopes. The effect of the polyatomic ion interference on uranium isotope measurement has been estimated.

Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application (안정동위원소비 분석 기법의 이해: 시료의 전처리, 분석 및 자료의 해석과 적용)

  • Kim, Min-Seob;Hwang, Jong-Yeon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.471-487
    • /
    • 2013
  • This review paper was written to provide background information as well as future application for aquatic ecologists interested in using stable isotope. Stable isotope techniques has proved to be an extremely useful to elucidate a lot of environmental and ecological problems. Stable isotopes have been used as possible tracers to identify sources, to quantify relative inputs in a system. When utilized carefully, stable isotope tools provides apparent advantages for the scientists to find out the processes of material cycles in various environments and energy flows in natural ecosystems.

Quantitative Analysis of Trace pp'-DDE in Corn Oil by Isotope Dilution Mass Spectrometry : Uncertainty Evaluations

  • 김병주;김달호;최종오;소헌영
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.910-916
    • /
    • 1999
  • A current interest in chemistry concerns traceability of analytical measurements to the International System of Units (SI) and the proper estimation of their uncertainties in accordance with the internationally agreed guide provided by the International Organization for Standardization (ISO). Isotope dilution mass spectrometry (IDMS) is regarded as a primary method, which make the measurement results traceable to SI units without significant empirical correction factors. Our laboratory, as the national standards institute of Korea, participated in an intercomparison of environmental analysis, pp'-DDE in corn oil, which was organized by the CCQM under supervision of the CIPM to test feasibility of IDMS as a primary method for the trace analysis of organic compounds. In this report, we provide basic equations used for the calculation of the concentration of the analyte in a sample and a precise description of the processes for the evaluation of the uncertainties of the measurement results. Also, we report the experimental conditions adopted to improve the accuracy of the IDMS measurement. The principles contained in ??Guide to the Expression of Uncertainty in Measurement'' provided by ISO are followed for the uncertainty evaluation.

DISSOLUTION AND BURNUP DETERMINATION OF IRRADIATED U-Zr ALLOY NUCLEAR FUEL BY CHEMICAL METHODS

  • Kim, Jung-Suk;Jeon, Young-Shin;Park, Soon-Dal;Song, Byung-Chul;Han, Sun-Ho;Kim, Jong-Goo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • Destructive methods were used for the burnup determination of U-Zr alloy nuclear fuel irradiated in the High-flux Advanced Neutron Application Reactor (HANARO) at KAERI. The dissolution rate of unirradiated U-Zr alloy fuel in $HNO_3$/HF mixtures was investigated for the experimental conditions of a different temperature, and initial concentrations of HF and $HNO_3$. The irradiated U-Zr alloy fuel specimen was dissolved in a mixed acid condition of 3 M HNO3 and 1 M HF at $90^{\circ}C$ for 8 hours under reflux. The total burnup was determined from measurement of the Nd isotope burnup monitors. The method includes U, Pu, $^{148}Nd,\;^P{145}Nd+^{146}Nd,\;^{144}Nd+^{143}Nd$ and total Nd isotopes determination by the isotope dilution mass spectrometric method (IDMS) using triple spikes $(^{233}U,\;^{242}Pu\;and\;^{150}Nd)$. The effective fission yield was calculated from the weighted fission yields averaged over the irradiation period. The results are compared with that obtained by the destructive -spectrometric measurement of the $^{137}Cs$ monitor.

Determination of the Origin of Particulate Organic Matter at the Lake Paldang using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$) (입자성 유기물의 안정동위원소비를 이용한 팔당호 수계내의 유기물 기원 연구)

  • Kim, Min-Seob;Kim, Jong-Min;Hwang, Jong-Yeon;Kim, Bo-Kyong;Cho, Hang-Soo;Youn, Seok Jea;Hong, Suk-Young;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • Organic carbon and nitrogen stable isotope ratios of particulate organic matter (POM) were determined at 7 stations (6 stations in Han river and Paldang dam outflow station) from May to October 2013, in order to understand the origin of POM at the Han river. ${\delta}^{13}C$ values of POM in four stations showed significant seasonal changes season, but ${\delta}^{15}N$ values were enriched in around Kyeongan stream (K). POC, PN and Chl-a concentration showed a similar seasonal pattern in Kyeongan stream, with an apparent decrease from July to August. POC and PN concentration has a higher correlation with Chl-a concentration in Kyeongan stream (K). ${\delta}^{13}C$ and ${\delta}^{15}N$ values of POM has a lighter value during lower Chl-a concentration peroid, compared to other seasons. Our results revealed that Kyeongan stream (K) seemed to be influenced by substantial amount of organic manure or fertilizer input in 2013, compared to the previous year (2012). These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of organic matter origin in aquatic environments.

Accurate Quantification of Saccharin Using Isotope Dilution Liquid Chromatography Mass Spectrometry (ID-LC/MS)

  • Lee, Yun-Jung;Kim, Byung-Joo;Kim, Jeong-Kwon;Ahn, Seong-Hee
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.37-40
    • /
    • 2011
  • Saccharin is a commonly used artificial sweetener in foodstuffs. However, for its carcinogenic dispute, it has been regulated by government bodies. In this study, isotope dilution mass spectrometry (ID-MS) was introduced for the accurate quantification of saccharin. To employ ID-LC/MS, we obtained its isotope analogue, $^{13}C_1$-sodium saccharin, by customized synthesis. Samples were spiked with $^{13}C_1$-sodium saccharin and analyzed with LC/MS in negative mode. Chromatographic conditions were optimized for the adequate chromatographic retention and separation of saccharin with a $C_{18}$ column. MS was operated with electrospray ionization by the selected ion monitoring (SIM) mode of $[M-H]^-$ for saccharin (m/z 182) and $[M-Na]^-$ for its isotope analogue (m/z 183). To validate the ID-LC/MS method for accurate measurement, we prepared a batch of a candidate material by sortifying quasi-tea-drinks with saccharin and analyzed samples gravimetrically fortified in various levels of concentration. The repeatability and reproducibility of this method was tested by analyzing the reference material. Result show that ID-LC/MS is a reliable method for the quantitative analysis of saccharin.

Sensitivity studies on a novel nuclear forensics methodology for source reactor-type discrimination of separated weapons grade plutonium

  • Kitcher, Evans D.;Osborn, Jeremy M.;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1355-1364
    • /
    • 2019
  • A recently published nuclear forensics methodology for source discrimination of separated weapons-grade plutonium utilizes intra-element isotope ratios and a maximum likelihood formulation to identify the most likely source reactor-type, fuel burnup and time since irradiation of unknown material. Sensitivity studies performed here on the effects of random measurement error and the uncertainty in intra-element isotope ratio values show that different intra-element isotope ratios have disproportionate contributions to the determination of the reactor parameters. The methodology is robust to individual errors in measured intra-element isotope ratio values and even more so for uniform systematic errors due to competing effects on the predictions from the selected intra-element isotope ratios suite. For a unique sample-model pair, simulation uncertainties of up to 28% are acceptable without impeding successful source-reactor discrimination. However, for a generic sample with multiple plausible sources within the reactor library, uncertainties of 7% or less may be required. The results confirm the critical role of accurate reactor core physics, fuel burnup simulations and experimental measurements in the proposed methodology where increased simulation uncertainty is found to significantly affect the capability to discriminate between the reactors in the library.

Development of chemical ionization method in a GC-TOF mass spectrometer for accurate mass and isotope ratio measurement (Accurate mass 및 isotope ratio 측정을 위한 GC-TOF 질량분석기에서의 화학적 이온화방법)

  • Chung, Joo-Hee;Na, Yun-Cheol;Hwang, Geum-Sook;Shin, Jeoung-Hwa;Ahn, Yun-Gyong
    • Analytical Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • An accurate mass and isotope ratio were determined using a gas chromatography/time of flight mass spectrometer in CI positive mode for the identification of unknown metabolites. High mass tune was used to improve the ion intensity of $[M+H]^+$. Chromatographic resolution and dynamic range enhancement were performed to obtain more reliable accurate masses and correct isotope abundance ratios. Average absolute errors of mass and isotope ratios for 24 reference metabolite -TMS (trimethylsilyl) derivatives were 6.8 ppm, 1.5% of (M+1/M ratio) and 1.7% of (M+2/M ratio), respectively. The correct formulas of twenty one compound were retrieved within top-2 hit from the heuristic algorithm for elemental composition using each accurate mass and isotope abundance ratio.