DOI QR코드

DOI QR Code

Isotope Measurement of Uranium at Ultratrace Levels Using Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Oh, Seong-Y. (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Seon-A. (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Myung-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Kyu-Seok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2012.05.23
  • Accepted : 2012.06.20
  • Published : 2012.06.28

Abstract

Mass spectrometric analysis was carried out using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for the precise and accurate determination of the isotope ratios of ultratrace levels of uranium dissolved in 3% $HNO_3$. We used the certified reference material (CRM) 112-A at a trace level of 100 pg/mL for the uranium isotopic measurement. Multiple collectors were utilized for the simultaneous measurement of uranium isotopes to reduce the signal uncertainty due to variations in the ion beam intensity over time. Mass bias correction was applied to the measured U isotopes to improve the precision and accuracy. Furthermore, elemental standard solution with certified values of platinum, iridium, gold, and thallium dissolved in 3% $HNO_3$ were analyzed to investigate the formation rates of the polyatomic ions of $Ir^{40}$ $Ar^+$, $Pt^{40}$ $Ar^+$, $Tl^{40}$ $Ar^+$, $Au^{40}$ $Ar^+$ for the concentration range of 50-400 pg/mL. Those polyatomic ions have mass-to-charge ratios in the 230-245 m/z region that it would contribute to the increase of background intensity of uranium, thorium, plutonium, and americium isotopes. The effect of the polyatomic ion interference on uranium isotope measurement has been estimated.

Keywords

References

  1. Baglan, N.; Hemet, P.; Pointurier F.; Chiappini, R. J. Radioanal. Nucl. Chem. 2004, 261, 609. https://doi.org/10.1023/B:JRNC.0000037103.25378.42
  2. Jakubowski, N.; Prohaska, T.; Rottmann, L.; Vanhaecke, F. J. Anal. At. Spectrom. 2011, 26, 693. https://doi.org/10.1039/c0ja00161a
  3. Agarande M.; Benzoubir, S.; Bouisset, P.; Calmet, D. Appl. Radiat. Isot. 2001, 55, 161. https://doi.org/10.1016/S0969-8043(01)00045-8
  4. Hoffmann, D. L.; Prytulak, J.; Richards, D. A.; Elliott, T.; Coath, C. D.; Smart, P. L.; Scholz, D. Int. J. Mass Spectrom. 2007, 264, 97. https://doi.org/10.1016/j.ijms.2007.03.020
  5. Zhang X. Z.; Esaka, F.; Esaka, K. T.; Magara, M.; Sakurai, S.; Usuda, S.; Watanabe, K. Spectrochim. Acta B 2007, 62, 1130. https://doi.org/10.1016/j.sab.2007.06.013
  6. Agarande, M.; Benzoubir, S.; Nevia-Marques, A. M.; Bouisset, P. J. Environ. Radioact. 2004, 72, 169. https://doi.org/10.1016/S0265-931X(03)00199-1
  7. Yang, L. Mass Spectrom. Rev. 2009, 28, 990. https://doi.org/10.1002/mas.20251
  8. Tayler, R. N.; Warneke, T.; Milton, J. A.; Croudace, I. W.; Warwick, P. E.; Nesbitt, R. W. J. Anal. At. Spectrom. 2003, 18, 480. https://doi.org/10.1039/b300432e
  9. Hoffmann, D. L. Int. J. Mass Spectrom. 2008, 275, 75. https://doi.org/10.1016/j.ijms.2008.05.033
  10. Pointurier, F.; Hemet, P.; Hubert, A. J. Anal. At. Spectrom. 2008, 23, 94 https://doi.org/10.1039/b708568k
  11. Kim, C. S.; Kim, C. K.; Marin, P.; Sansone, U. J. Anal. At. Spectrom. 2007, 22, 827. https://doi.org/10.1039/b617568f
  12. Magara, M. et. al., J. Nucl. Sci. Technol. 2002, 39, 308. https://doi.org/10.1080/18811248.2002.9715193
  13. Pointurier, F.; Baglan, N.; Hemet, P., Appl. Radiat. Isot. 2004, 60, 561. https://doi.org/10.1016/j.apradiso.2003.11.083
  14. Albarede, F.; Telouk, P.; Blichert-Toft, J.; Agranier, A.; Nelson, B., Geochim. Cosmochim. Acta, 2004, 68, 2725. https://doi.org/10.1016/j.gca.2003.11.024
  15. Ciceri, E.; Recchia, S.; Dossi, C.; Yang, L.; Sturgeon, R. E., Talanta 2008, 74, 642. https://doi.org/10.1016/j.talanta.2007.06.029
  16. New Brunswick Laboratory U.S. Department of Energy, http://www.nbl.doe.gov

Cited by

  1. Mass spectrometric analysis for nuclear safeguards vol.30, pp.7, 2015, https://doi.org/10.1039/C4JA00491D
  2. Development of environmental sample analysis technique in KAERI: bulk analysis and establishment of clean laboratory facility (CLASS) vol.307, pp.3, 2016, https://doi.org/10.1007/s10967-015-4372-2
  3. Determination of total uranium and uranium isotope ratios in human urine by ICP-MS:results of an interlaboratory study vol.30, pp.1, 2015, https://doi.org/10.1039/C4JA00235K
  4. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: applications to environmental sampling for nuclear safeguards vol.307, pp.3, 2016, https://doi.org/10.1007/s10967-015-4419-4