• Title/Summary/Keyword: isotherm adsorption

Search Result 897, Processing Time 0.034 seconds

Adsorption Characteristics of Elemental Iodine and Methyl Iodide on Base and TEDA Impregnated Carbon (활성탄을 이용한 원소요오드 및 유기요오드 흡착특성)

  • Lee, Hoo-Kun;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.44-55
    • /
    • 1996
  • For the purpose of controlling the release of radioiodine to the environment in nuclear power plants, adsorption characteristics of elemental iodine and methyl iodide on the base carbon and 2%, 5% TEDA impregnated carbons were studied. The amounts of adsorption of elemental iodine and methyl iodide on the carbons were compared with Langmuir, Freundlich, Sips and Dubinin-Astakhov(DA) isotherm equations. Adsorption data were well correlated by the DA equation based on the potential theory. Adsorption energy distributions were obtained from the parameters of the DA equation derived from the condensation approach method. For the adsorption of methyl iodide and elemental iodine-carbon system, the DA equation can be well expressed by the degree of heterogeneity of the micropore system because the surface is nonuniform when its potential energy is unequal. The adsorption energy distribution wes investigated to find a surface heterogeneity on the carbon. The surface heterogeneity for iodine-carbon system is highly affected by the adsorbate-adsorbent interaction as well as the pore structure. The surface heterogeneity increases as a content of TEDA impregnated increases. The adsorption nature of methyl iodide on carbon turned out to be more heterogeneous than that of elemental iodine.

  • PDF

Development of Volume Modified Sorption Model and Prediction for Volumetric Strain of Coal Matrix (흡착에 의한 석탄암체의 부피변화가 고려된 흡착모델 개선 및 부피변형률 예측)

  • Kim, Sang-Jin;Sung, Won-Mo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2015
  • We proposed the improved Langmuir adsorption relations considering volume change effect of coal matrix during primary production of CBM and Enhanced-CBM with injection of carbon dioxide or CCS in coalseam but also volumetric strain. To verify this model, experimental data of pure gas adsorption such as $CO_2$, $CH_4$, and $N_2$ on coals were used to compare conventional Langmuir model with this model. From the results, we obtained that the larger adsorption capacity of coal and the higher adsorption affinity of gas, the larger error occur with Langmuir model. Using this model, however, we found not only substantially better fit in all condition but also reasonable volumetric strain of the coal matrix. We also applied this volume modified pure gas adsorption model to the IAS model to describe gas adsorption and volumetric strain for mixed gas. This modified-IAS model fitting experimental data by Hall et al(1994) improved accuracy of mixed gas adsorption calculation compared with conventional model.

Magnetite for phosphorus removal in low concentration phosphorus-contained water body

  • Xiang, Heng;Liu, Chaoxiang;Pan, Ruiling;Han, Yun;Cao, Jing
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • Magnetite was chosen as a typical adsorbent to study its phosphate adsorption capacity in water body with low concentration of phosphorus (below $2mg\;PL^{-1}$). Magnetite was collected from Luoyang City, Henan Province, China. In this research, three factors have been studied to describe the adsorption of phosphate on magnetite, which was solution concentration (concentration ranging from 0.1 to $2.5mg\;PL^{-1}$), suspension pH (1 to 13) and temperature (ranging from $10^{\circ}C$ to $40^{\circ}C$). In addition, the modified samples had been characterized with XRD and FE-SEM image. The results show that iron ions contains in magnetite were the main factors of phosphorus removal. The behavior of phosphorus adsorption to substrates could be fitted to both Langmuir and Freundlich isothermal adsorption equations in the low concentration phosphorus water. The theoretical saturated adsorption quantity of magnetite is 0.158 mg/g. pH has great influence on the phosphorus removal of magnetite ore by adsorption. And pH of 3 can receive the best results. While temperature has little effect on it. Magnetite was greatly effective for phosphorus removal in the column experiments, which is a more practical reflection of phosphorous removal combing the adsorption isotherm model and the breakthrough curves. According to the analysis of heavy metals release, the release of heavy metals was very low, they didn't produce the secondary pollution. The mechanism of uptake phosphate is in virtue of chemisorption between phosphate and ferric ion released by magnetite oxidation. The combined investigation of the magnetite showed that it was better substrate for water body with low concentration of phosphorus.

Adsorption Calculation of Oxygen, Nitrogen and Argon in Carbon-Based Adsorbent with Randomly Etched Graphite Pores (무작위 에칭 흑연 기공을 가지는 탄소기반 흡착제에 의한 산소, 질소 및 아르곤의 흡착 계산)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.348-356
    • /
    • 2018
  • The adsorption equilibria of oxygen, nitrogen and argon on carbonaceous adsorbent with slit-shaped and randomly etched graphite (REG) pores were calculated by molecular simulation method. Reliable models of adsorbents and adsorbates for adsorption equilibria are important for the correct design of industrial adsorptive separation processes. At the smallest physical pore of $5.6{\AA}$, only oxygen molecules were accommodated at the center of the slit-shaped pore, and from $5.9{\AA}$ nitrogen and argon molecules could be accommodated in the pores. Slit pores showed higher adsorption capacity compared with REG pores with same averaged reenterance pore size due to dead volume and inaccessible volume in defected pores. And it was shown the adsorption capacities of oxygen and argon was same in larger pore size. From calculated adsorption isotherms at 298 K it showed that the adsorption capacity ratio of oxygen to nitrogen is increased as pressure is increased.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).

Adsorption Characteristics of Sr Ions by Coal Fly Ash-Based-Zeolite X using Response Surface Modeling Approach (반응표면분석법을 이용한 석탄회로 합성한 제올라이트 X에서의 Sr 이온 제거특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.719-728
    • /
    • 2017
  • In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (${\Delta}H^o$>0) and spontaneous (${\Delta}G^o$<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration ($X_1$), initial temperature ($X_2$), and initial pH ($X_3$) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient ($R^2=0.9937$) and the adjusted determination coefficient (adjusted $R^2=0.9823$) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.

Adsorption Characteristics of Cobalt Ion with Zeolite Synthesized by Coal Fly Ash (석탄계 비산재로 합성한 제올라이트를 이용한 코발트 이온의 흡착특성)

  • Lee, Chang-Han;Suh, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.941-946
    • /
    • 2009
  • Two types of synthetic zeolites, commercially used (Z-WK) and synthesized by coal fly ash (Z-C1), and raw coal fly ash(F-C1) were examined for its kinetics and adsorption capacities of cobalt. Experimental data are fitted with kinetic models, Lagergen $1^{st}$ and $2^{nd}$ order models, and four types of adsorption isotherm models, Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan. Synthesized zeolite (Z-C1) which had 1.51 of Si/Al ratio was synthesized by raw coal fly ash from a thermal power plant. Adsorption capacities with three types of adsorbents, Z-WK, Z-C1, and F-C1, were in the order of Z-C1 (94.15 mg/g) > F-C1 (92.94 mg/g) > Z-WK (88.56mg/g). The adsorption kinetics of Z-WK and Z-C1 with cobalt could be accurately described by a pseudo-second-order rate equation. The adsorption isotherms of Z-WK and Z-C1 with cobalt were well fitted by the Langmuir and Redlich-Peterson equation. Z-C1 will be used to remove cobalt in water as a more efficient absorbent.

Utilization of Waste Mn-ferrite for Treating Heavy Metals in Wastewater (Mn-ferrite의 중금속 흡착특성-폐 페라이트의 중금속폐수 처리 활용 가능성)

  • 이상훈;윤창주;이희란
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.381-385
    • /
    • 2003
  • We investigated possible application of waste ferrite in treating Cd and Pb in wastewater. Adsorption of Cd and Pb on Mn-Ferrite are influenced by several controlling factors such as contact time, heavy metal concentrations, pH and temperature. Both Cd and Pb achieved adsorption equilibrium within 5 minutes. Based upon this kinetic data, 24 hours of contact time was allowed for other experiment. The adsorption of Cd and Pb was high at high pH and high ion concentrations. The reaction was also affected by temperature. Adsorption isotherms fits well with the Freundlich isotherm equation. pH is the main controlling factor in Cd, Pb adsorption on the Mn-ferrite. Cd showed S type adsorption curve while Pb showed sorption edges, depending on the Pb concentrations.

H2S Adsorption Characteristics of KOH Impregnated Activated Carbons (KOH 첨착 활성탄에서 황화수소의 흡착 특성)

  • Choi, Do-Young;Jang, Seong-Cheol;Gong, Gyeong-Tack;Ahn, Byoung-Sung;Choi, Dae-Ki
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.280-285
    • /
    • 2006
  • Adsorption characteristics of $H_{2}S$ on KOH impregnated activated carbon were evaluated using dynamic adsorption method in a fixed bed. The pore properties, including BET's specific surface area, pore volume, pore size distribution, and mean pore diameter of these KOH impregnated activated carbons, were characterized from $N_{2}$ adsorption/desorption isotherms. Adsorption equilibrium data were correlated with Langmuir and Freundlich isotherms. The adsorption of $H_{2}S$ onto the KOH impregnated activated carbon is better fitted by the Langmuir isotherm. An increase in the content of oxygen affects the performance of KOH impregnated activated carbon to the greatest extent.