• Title/Summary/Keyword: isoprenoid

Search Result 57, Processing Time 0.021 seconds

Isolation and Identification of Bacillus sp. LAM 97-44 Producing Antifungal Antibiotics (항진균성 항생물질을 생산하는 Bacillus sp. LAM 97-44의 분리 및 동정)

  • Lee, No-Woon;Kim, Cheon-Suk;Do, Jae-Ho;Jung, In-Chan;Lee, Hyean-Woo;Yi, Dong-Heui
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.208-212
    • /
    • 1998
  • In order to develop an effective antifungal antibiotics, over 700 isolates of bacteria, mold and actinomytes were screened from soil, and LAM 97-44 were selected as a strain producing the strong antifungal antibiotics against Candida albicans. Morphological, cultural and physiological characteristics of LAM 97-44 were investigated for the indentification. The cell size of LAM 97-44 was $2{\sim}3{\times}1{\sim}1.5\;{\mu}m$, and the shape of spore was of ellipsoidal. As a carbon source, LAM 97-44 utilized fructose, glucose, glycerol, maltose and raffinose but did not utilize arabinose, cellulose and xylose. The fatty acids of the cells included various iso-type and anteiso-type. Conclusively, the strain LAM 97-44 was proved to be Bacillus subtilis.

  • PDF

Identification and Characterization of Agar-degrading Vibrio sp. GNUM08123 Isolated from Marine Red Macroalgae (한천분해 미생물 Vibrio sp. GNUM08123의 동정 및 agarase 생산의 발효적 특성)

  • Chi, Won-Jae;Kim, Yoon Hee;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.243-249
    • /
    • 2017
  • An agar-degrading bacterium, designated as the GNUM08123 strain, was isolated from samples of red algae collected from the Yongil Bay near East Sea, Korea. The isolated GNUM08123 strain was gram-negative, aerobic, motile, and beige-pigmented, with $C_{16:0}$ (25.9%) and summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$, 34.4%) as its major cellular fatty acids. A similarity search based on the 16S rRNA gene sequence revealed that it belonged to class Gammaproteobacteria and shared 97.7% similarity with the type strain Vibrio chagasii $R-3712^T$. The DNA G+C content of strain $GNUM08123^T$ was 46.9 mol%. The major isoprenoid quinone was ubiquinone-8. The results of DNA-DNA relatedness and 16S rRNA sequence similarity analyses, in addition to its phenotypic and chemotaxonomic characteristics, suggest that strain GNUM08123 is a novel species within genus Vibrio, designated as Vibrio sp. GNUM08123. Agarase production by strain GNUM08123 was induced by agar and sucrose, but was repressed probably owing to carbon catabolite repression by glucose and maltose.

Identification of Korean Ginseng Cytochrome P450 gene and Its Characterization by Transformation System (고려인삼 유래 Cytochrome P450 유전자의 동정 및 형질전환에 의한 특성검정)

  • Shim, Ju-Sun;Kim, Yu-Jin;Jung, Seok-Kyu;Kwon, Woo-Saeng;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.212-218
    • /
    • 2009
  • Triterpenoid saponins were synthesized in Panax ginseng C.A. Meyer via the isoprenoid pathway by cyclization of 2,3-oxidosqualene to give primarily oleanane (beta-amyrin) or dammarane triterpenoid skeletons. The triterpenoids are backbone and undergoes various modifications (oxidation, substitution and glycosylation), mediated by cytochrome P450 (CYP)-dependent monooxygenases, glycosyltransferase and other enzymes. This is likely to be due in part to the complexity of the molecules and the lack of pathway intermediates for biochemical studies. A cDNA clone encoding a putative CYP gene was isolated from flower bud of ginseng and transformed into the plant(Nicotiana tabacum cv. Xanthi) and confirmed by PCR analysis. The CYP gene (PgCYP) contained an open reading frame(ORF) encoding mature protein of 500 amino acids. The expression of PgCYP were investigated in transgenic tobacco by reverse transcriptase-polymerase chain reaction (RT-PCR).

Isolation of Sesquiterpene Synthase Homolog from Panax ginseng C.A. Meyer

  • Khorolragchaa, Altanzul;Parvin, Shohana;Shim, Ju-Sun;Kim, Yu-Jin;Lee, Ok-Ran;In, Jun-Gyo;Kim, Yeon-Ju;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • Sesquiterpenes are found naturally in plants and insects as defensive agents or pheromones. They are produced in the cytosolic acetate/mevalonate pathway for isoprenoid biosynthesis. The inducible sesquiterpene synthases (STS), which are responsible for the transformation of the precursor farnesyl diphosphate, appear to generate very few olefinic products that are converted to biologically active metabolites. In this study, we isolated the STS gene from Panax ginseng C.A. Meyer, designated PgSTS, and investigated the correlation between its expression and various abiotic stresses using real-time PCR. PgSTS cDNA was observed to be 1,883 nucleotides long with an open reading frame of 1,707 bp, encoding a protein of 568 amino acids. The molecular mass of the mature protein was determined to be 65.5 kDa, with a predicted isoelectric point of 5.98. A GenBank BlastX search revealed the deduced amino acid sequence of PgSTS to be homologous to STS from other plants, with the highest similarity to an STS from Lycopersicon hirsutum (55% identity, 51% similarity). Real-time PCR analysis showed that different abiotic stresses triggered significant induction of PgSTS expression at different time points.

Polyphasic Assignment of a Highly Proteolytic Bacterium Isolated from a Spider to Serratia proteamaculans

  • Kwak, Jang-Yul;Lee, Dong-Hun;Park, Youn-Dong;Kim, Seung-Bum;Maeng, Jin-Soo;Oh, Hyun-Woo;Park, Ho-Yong;Bae, Kyung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1537-1543
    • /
    • 2006
  • A bacterial strain named HY-3 that produces a highly active extracellular protease was isolated from the digestive tract of a spider, Nephila clavata. The bacterium was a Gram-negative, oxidase-negative, catalase-positive, nonhalophilic, nitrate-reducing, facultative anaerobe. Transmission and scanning electron microscopies demonstrated that the isolate was non-spare-forming, straight, rod-shaped, and motile by peritrichous flagella. The G+C content of the DNA was 57.0 mol%. The isoprenoid quinone type was ubiquinone with 8 isoprene units (Q-8). The morphological and biochemical characteristics including the predominant fatty acid and phospholipids profiles placed the isolate HY-3 in the family Enterobacteriaceae. Further biochemical characterization and phylogenetic studies including determination of an almost complete 16S ribosomal DNA sequence suggested that the bacterium was closely related to the genus Serratia. DNA-DNA hybridization analysis revealed that this extracellular protease-producing strain belongs to Serratia proteamaculans, which is also known far its association with insects.

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.

Functional Characterization of sll1556 of Synechocystis sp. PCC6803 as Type II Isopentenyl Diphosphate Isomerase (Type II Isopentenyl Diphosphate Isomerase로서 Synechocystis sp. PCC6803의 sll1556의 작용 특성)

  • Cho, Kab-Yeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.526-530
    • /
    • 2010
  • Isopentenyl diphosphate(IPP) isomerization to dimethylallyl diphosphate(DMAPP) is an important step for the efficient production of isoprenoids such as lycopene, ${\beta}$-carotene, astaxanthin, etc. The type II isopentenyl diphosphate isomerase gene from Synechocystis sp. PCC6803(sll1556, Syidi2) was cloned and expressed in Escherichia coli $DH5{\alpha}$. When E. coli $DH5{\alpha}$ harboring lycopene synthesis genes, crtE, crtB, and crtI and mevalonate pathway genes, MvK1, MvK2, and Mvd, was cultured on LB medium containing mevalonate, the strain grew very slowly be due to the toxicity of isopentenyl diphosphate derived from mevalonate. When Syidi2 was introduced to E. coli $DH5{\alpha}$ harboring the lycopene synthesis genes and mevalonate pathway genes, growth on mevalonate medium was fully restored and the colony showed red color indicating lycopene formation. The growth rate of the mutant strain, E. coli $DH5{\alpha}$(idi::${\Delta}km$), was very slow because of IPP accumulation and DMAPP deprivation. Ultimately the idi mutant was complemented by introducing the Syidi2 gene.

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea (서해안 해수로부터 분리한 한천분해 해양미생물 Pseudoalteromonas sp. H9의 동정 및 특성 연구)

  • Chi, Won-Jae;Youn, Young Sang;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.

Inhibitory Effect on Melanin Formation, Collagenase and Elastase Activity by synthesized Coenzyme $Q_{10}$ Derivatives (세포내 멜라닌 생성 및 Collagenase와 Elastase에 대한 Coenzyme $Q_{10}$ 유도체들의 억제활성)

  • Choi, Won-Sik;Jang, Do-Yoen;Nam, Seok-Woo;Eo, Jin-Yong;Lee, Kyoung-Ju
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.164-170
    • /
    • 2008
  • Coenzyme $Q_{10}$ and six derivatives of coenzyme Qn were synthesized and tested for their inhibitory effects on melanogenesis occurred in murine melanoma (B16/F1) cells and on collagenase/elastase activities as well. As the result, synthetic coenzyme Qn showed a potent inhibitory effect on melanin formation, collagenase and elastase activities in all tested concentrations. Among these synthetic compounds, coenzyme $Q_1$ and coenzyme $Q_2$ potentially inhibited melanin formation and elastase activity when compared to other coenzyme Qn derivatives. For the collagenase activities, all coenzyme Qn derivatives inhibited 80-85% of controls. As compared, coenzyme Qn derivatives exhibited strong inhibitory activities with the decrease of isoprenoid unit number of coenzyme Qn derivatives except for collagenase activity. For the inhibition of collagenase activity, moiety of benzoquinone might be considered as the active functional group. Taken together, coenzyme $Q_1$ and coenzyme $Q_2$ might be used for functional cosmetics.

Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea

  • Chi, Won-Jae;Park, Jae-Seon;Kwak, Min-Jung;Kim, Jihyun F.;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1509-1518
    • /
    • 2013
  • An agar-degrading bacterium, designated as strain $G7^T$, was isolated from a coastal seawater sample from Gaya Island (Gayado in Korean), Republic of Korea. The isolated strain $G7^T$ is gram-negative, rod shaped, aerobic, non-motile, and non-pigmented. A similarity search based on its 16S rRNA gene sequence revealed that it shares 95.5%, 90.6%, and 90.0% similarity with the 16S rRNA gene sequences of Catenovulum agarivorans $YM01^T$, Algicola sagamiensis, and Bowmanella pacifica W3-$3A^T$, respectively. Phylogenetic analyses demonstrated that strain $G7^T$ formed a distinct monophyletic clade closely related to species of the family Alteromonadaceae in the Alteromonas-like Gammaproteobacteria. The G+C content of strain $G7^T$ was 41.12 mol%. The DNA-DNA hybridization value between strain $G7^T$ and the phylogenetically closest strain $YM01^T$ was 19.63%. The genomes of $G7^T$ and $YM01^T$ had an average ANIb value of 70.00%. The predominant isoprenoid quinone of this particular strain was ubiquinone-8, whereas that of C. agarivorans $YM01^T$ was menaquinone-7. The major fatty acids of strain $G7^T$ were Iso-$C_{15:0}$ (41.47%), Anteiso-$C_{15:0}$ (22.99%), and $C_{16:1}{\omega}7c/iso-C_{15:0}2-OH$ (8.85%), which were quite different from those of $YM01^T$. Comparison of the phenotypic characteristics related to carbon utilization, enzyme production, and susceptibility to antibiotics also demonstrated that strain $G7^T$ is distinct from C. agarivorans $YM01^T$. Based on its phenotypic, chemotaxonomic, and phylogenetic distinctiveness, strain $G7^T$ was considered a novel genus and species in the Gammaproteobacteria, for which the name Gayadomonas joobiniege gen. nov. sp. nov. (ATCC BAA-2321 = $DSM25250^T=KCTC23721^T$) is proposed.