References
- Macian MC, Ludwig W, Schleifer KH, Pujalte MJ, Garay E. 2001. Vibrio agarivorans sp. nov, a novel agarolytic marine bacterium. Int. J. Syst. Evol. Microbiol. 51: 2031-2036. https://doi.org/10.1099/00207713-51-6-2031
- Usov AI. 1998. Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloid. 12: 301-308. https://doi.org/10.1016/S0268-005X(98)00018-6
- Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908-912. https://doi.org/10.1038/nature08937
- Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
- Giordano A, Andreotti G, Tramice A, Trincone A. 2006. Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides. Biotechnol. J. 1: 511-530. https://doi.org/10.1002/biot.200500036
- Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Ncoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
- Chen HM, Zheng L, Yan XJ. 2005. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol. Biotechnol. 43: 29-36.
- Enoki T, Okuda S, Kudo Y, Takashima F, Sagawa H, Kato I. 2010. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci. Biotechnol. Biochem. 74: 766-770. https://doi.org/10.1271/bbb.90803
- Ji J, Wang LC, Wu H, Luan HM. 2011. Bio-function summary of marine oligosaccharides. Int. J. Biol. 3: 74-86.
- Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. 2017. Anti-obesity and anti-diabetic effect of neoagarooligosaccharides on high-fat diet-induced obesity in mice. Mar. Drugs 15: 90. https://doi.org/10.3390/md15040090
- Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
- Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, Lim YW. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
- Kimura M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Komagata K, Suzuki K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
- Miller L, Berger T. 1985. Bacterial identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Application note 228-241. Hewlett-Packard Co, Avondale, Pa.
- Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE:MIDI Inc.
- Mesbah M, Premachandran U, Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Thompson FL, Thompson CC, Li Y, Gomez-Gil B, Vandenberghe J, Hoste B, et al. 2003. Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int. J. Syst. Evol. Microbiol. 53: 753-759. https://doi.org/10.1099/ijs.0.02490-0
- Thompson FL, Thompson CC, Hoste B, Vandemeulebroecke K, Gullian M, Swings J. 2003. Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. Int. J. Syst. Evol. Microbiol. 53: 1495-1501. https://doi.org/10.1099/ijs.0.02658-0
- Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464. https://doi.org/10.1099/00207713-37-4-463
- Stackebrandt E, Goebel BM. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
- Miyazono K, Tabei N, Morita S, Ohnishi Y, Horinouchi S, Tanokura M. 2012. Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J. Bacteriol. 194: 607-616. https://doi.org/10.1128/JB.06173-11
- Romero-Rodriguez A, Ruiz-Villafan B, Tierrafria VH, Rodriguez-Sanoja R, Sanchez S. 2016. Carbon catabolite regulation of secondary metabolite formation and morphological differentiation in Streptomyces coelicolor. Appl. Biochem. Biotechnol. 180: 1152-1166. https://doi.org/10.1007/s12010-016-2158-9
- Lee CR, Chi WJ, Bae CH, Hong SK. 2015. Identification of a new agar-hydrolyzing bacterium Vibrio sp. S4 from the seawater of Jeju island and the biochemical characterization of thermostable agarose. Microbiol. Biotechnol. Lett. 43: 314-321. https://doi.org/10.4014/mbl.1510.10005