• Title/Summary/Keyword: isomorphic

Search Result 239, Processing Time 0.027 seconds

INVARIANT RINGS AND DUAL REPRESENTATIONS OF DIHEDRAL GROUPS

  • Ishiguro, Kenshi
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.299-309
    • /
    • 2010
  • The Weyl group of a compact connected Lie group is a reflection group. If such Lie groups are locally isomorphic, the representations of the Weyl groups are rationally equivalent. They need not however be equivalent as integral representations. Turning to the invariant theory, the rational cohomology of a classifying space is a ring of invariants, which is a polynomial ring. In the modular case, we will ask if rings of invariants are polynomial algebras, and if each of them can be realized as the mod p cohomology of a space, particularly for dihedral groups.

INDEX AND STABLE RANK OF C*-ALGEBRAS

  • Kim, Sang Og
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.71-77
    • /
    • 1999
  • We show that if the stable rank of $B^{\alpha}$ is one, then the stable rank of B is less than or equal to the order of G for any action of a finite group G. Also we give a short proof to the known fact that if the action of a finite group on a $C^*$-algebra B is saturated then the canonical conditional expectation from B to $B^{\alpha}$ is of index-finite type and the crossed product $C^*$-algebra is isomorphic to the algebra of compact operators on the Hilbert $B^{\alpha}$-module B.

  • PDF

A FAMILY OF QUANTUM MARKOV SEMIGROUPS

  • Ahn, Sung-Ki;Ko, Chul-Ki;Pyung, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.751-763
    • /
    • 2005
  • For a given gauge invariant state $\omega$ on the CAR algebra A isomorphic with the C$\ast$ -algebra of $2{\times}2$ complex matrices, we construct a family of quantum Markov semigroups on A which leave w invariant. By analyzing their generators, we decompose the algebra A into four eigenspaces of the semigroups and show some properties.

REFINEMENT PERMUTATIONS OF PRIME POWER ORDER

  • Park, Dong-Wan;Jo, Young-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • For a permutation ${\mu}$ in S$\sub$b/, the limit algebra A${\mu}$ of the stationary system given by ${\mu}$ is isomorphic to a refinement limit algebra if and only if its exponent set E(${\mu}$) is the set {0}. In the current paper, we prove a sufficient condition under which E(${\mu}$)={0} when the order of ${\mu}$ is a power of p, where p is a prime number dividing b.

  • PDF

THE LACUNARY STRONG ZWEIER CONVERGENT SEQUENCE SPACES

  • Sengonul, Mehmet
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • In this paper we introduce and study the lacunary strong Zweier sequence spaces $N_{\theta}^O[Z]$, $N_{\theta}[Z]$ consisting of all sequences x = $(x_k)$ such that (Zx) in the space $N_{\theta}$ and $N_{\theta}^O$ respectively, which is normed. Also, prove that $N_{\theta}^O[Z}$, $N_{\theta}[Z}$, are linearly isomorphic to the space $N_{\theta}^O$ and $N_{\theta}$, respectively. And we study some connections between lacunary strong Zweier sequence and lacunary statistical Zweier convergence sequence.

EXAMPLES OF SMOOTH SURFACES IN ℙ3 WHICH ARE ULRICH-WILD

  • Casnati, Gianfranco
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.667-677
    • /
    • 2017
  • Let $F{\subseteq}{\mathbb{P}}^3$ be a smooth surface of degree $3{\leq}d{\leq}9$ whose equation can be expressed as either the determinant of a $d{\times}d$ matrix of linear forms, or the pfaffian of a $(2d){\times}(2d)$ matrix of linear forms. In this paper we show that F supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p.

REMARKS ON ISOMORPHISMS OF TRANSFORMATION SEMIGROUPS RESTRICTED BY AN EQUIVALENCE RELATION

  • Namnak, Chaiwat;Sawatraksa, Nares
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.705-710
    • /
    • 2018
  • Let T(X) be the full transformation semigroup on a set X and ${\sigma}$ be an equivalence relation on X. Denote $$E(X,{\sigma})=\{{\alpha}{\in}T(X):{\forall}x,\;y{\in}X,\;(x,y){\in}{\sigma}\;\text{implies}\;x{\alpha}=y{\alpha}\}.$$. Then $E(X,{\sigma})$ is a subsemigroup of T(X). In this paper, we characterize two semigroups of type $E(X,{\sigma})$ when they are isomorphic.

THE KÜNNETH ISOMORPHISM IN BOUNDED COHOMOLOGY PRESERVING THE NORMS

  • Park, HeeSook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.873-890
    • /
    • 2020
  • In this paper, for discrete groups G and K, we show that the cohomology of the complex of projective tensor product B*(G)⨶B*(K) is isomorphic to the bounded cohomology Ĥ*(G × K) of G × K, which is the cohomology of B*(G × K) as topological vector spaces, where B*(G) is a complex of bounded cochains of G with real coefficients ℝ. In fact, we construct an isomorphism between these two cohomology groups that carries the canonical seminorm in Ĥ*(G × K) to the seminorm in the cohomology of B*(G)⨶B*(K).

CONDITIONAL INDEPENDENCE AND TENSOR PRODUCTS OF CERTAIN HILBERT L(sup)$\infty$-MODULES

  • Hoover, Thomas;Lambert, Alan
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.125-134
    • /
    • 2001
  • Independent $\sigma$-algebras Α and Β on X, L$^2$(X, Α V Β), L$^2$(X x X, Α x Β), and the Hilbert space tensor product L$^2$(X,Α), (※Equations, See Full-text) L$^2$(X,Β), are isomorphic. In this note, we show that various Hilbert C(sup)*-algebra tensor products provide the analogous roles when independence is weakened to conditional independence.

  • PDF

3-DIMENSIONAL NON-COMPACT INFRA-NILMANIFOLDS

  • Kim, Ki-Heung;Im, Sung-Mo
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.1-13
    • /
    • 1999
  • Let G be the 3-dimensional Heisenberg group. A discrete subgroup of Isom(G), acting freely on G with non-compact quotient, must be isomorphic to either 1, Z, Z2 or the fundamental group of the Klein bottle. We classify all discrete representations of such groups into Isom(G) up to affine conjugacy. This yields an affine calssification of 3-dimensional non-compact infra-nilmanifolds.

  • PDF