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3—DIMENSIONAL NON-COMPACT
INFRA—NILMANIFOLDS

HeunG Ki Kiv AND SuNg Mo IM

ABSTRACT Let G be the 3- d:mensxonal He}senberg group,| A dis-
crete subgroup of Isom(G), acting fyreely on G with non—ebmpacﬁ’
quotient, must be isoniorphic to either 1,'Z, 22 or the funttamen-
tal group of the Klein bottle. We clasal@' all discrete vepresen-
tations of such groups into Isom(C) up te affine conjugacy. This
yields an affine classification of 3-dimensional non-compact infra-
nilmanifolds.

A Euclidean space-form is the orbit space of the Euclidean space by
an action of a group of isometries. They are the spaces of constant
curvature 0. Due to the three theorems by Bieberbach, the structure,
finiteness and rigidity of such groups are known. In dimension 3, R® is
one of the so-called 8 geometries, and there are 10 comp&ct Euclidean
space-forms (up to affine equivalence}, see for example, [7] Chapter 3.

A connected, simply connected nilpotent Lie group with a left invari-
ant metric yields a geometry. An infra-nilmanifold is the orbit space of
the nilpotent Lie group by an action of a digcrete group of isometries.
It is well known that compact infra-nilmanifolds are exactly the almost
flat manifolds of Gromov. All of the Bieberbach theorems generalize
to nilpotent groups, due to Auslander [1], 2] and Lee-Raymond {5].
Thus, there are structure, finiteness and rigidity theorems for infra-
nilmanifolds. In dimension 3, the Heisenberg group yields the Nil-
geometry, also one the 8 geometries. All compact infra-nilmanifolds
with Nil-geometry are classified up to affine equivalence in [4].
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In this paper, we are concerned with non-compact spaces with the
Nil-geometry. Especially, we shall classify all the 3-dimensional non-
compact infra-nilmanifolds up to affine equivalence. The main results
are stated in Theorem 1.1, Theorem 2.3 and Theorem 3.1.

0. Generalities

Let G be the 3-dimensional Heisenberg group; i.e., G consists of all
3 x 3 real upper triangular matrices with diagonal entries 1. Thus G is
a simply connected, nilpotent Lie group, and there is an exact sequence

1-2G)-G-oR2>1,

where
1 0 z
Z(G) = 01 0]:2zeR
0 0 1

is the center of G, and is isomorphic to R. From now on, G refers to
the Heisenberg group.

Automorphisms of the Heisenberg group

As is well known, the group of automorphisms of G is Aut(G) =
R? x GL(2,R). See [6]. In fact, the R2-factor is the group of inner
automorphisms of G, and the GL(2, R)-factor induces the outer auto-
morphism group. An element

<[u] , [a ﬂ]) € R? x GL(2,R) = Aut(G)

v|’ |y &
sends
1 =z 2z 1 = 2
01 y to 0 1 ¢,
0 0 1 0 0 1
where
' = ax+ Py
y =~z +dy

0
Z' = (ab — By)z + Byzy + %sz + ﬂ—z—y2 + (uy — vz).
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NotATION. Throughout this paper, we shall use the following no-
tation.

R(p:[c?w —Simp], Tz[(l) ;‘l)]eO(z)c.Aut(G)

sin Cos @

101 110 1 0.0]
zo=10 1 0], xo=1]0 1 0], yo=|0 1 1]€G.
0 01 0 01 0 0 1

On the quotient space R®> = G/Z(G), the elements zg, Xg, Yo project

down to [g], e = [(1)], ég = [(1)], respectively. We denote the

images in R? by Zy, %o, ¥, etc. -

Note that an automorphism A4 = [3 b ] € GL(2,R) C Aut(G)

induces an automorphism on R? = G/Z(G) by matrix multlphcatzon
(which is a linear transformation of a vector space).

LEMMA 0.1. Let B be an element of O(2)—SO(2). Then B = Ry,
for some ¢, and R;'BR,, = 7. Therefore, every element of O(2) —SO(2)
is conjugate to T by an element of SO(2).

The isometry group of the Heisenberg group

We shall give a left-invariant Riemannian metric on the Heisenberg
group G by choosing an orthonormal basis for its Lie algebra

0 =z =
® = 0 0 y|:z,9,2€R
0 0 O

010 00 0 0 0 1
0 00|, |oo 1}, |oo of.
00 0 00 0 00 1

With this Riemannian metric, the group of isometries Isom(G) lies in
G x Aut(G):

as follows:

Tsom(G) = G x O(2) C G x Aut(Q).
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Further, it is well known that G x Aut(G) is the group of affine diffeo-
morphisms so that Aff(G) = G x (R? x GL(2,R)).

Generalized Bieberbach theorem

The following is a generalization of a theorem by Bieberbach to the
nilpotent case. It will be used to study representations of the group 7
into Isom(G). ‘

LEMMA 0.2. [2; Theorem 3] Let N be a connected, simply con-
nected nilpotent Lie group, C a compact group of automorphisms of
N. Suppose I' € N x C is a discrete subgroup. Then there exists a
connected Lie subgroup N* of N and a finite index subgroup I'* of T
such that I'* is a uniform subgroup of N*.

Fundamental groups of 3-dimensional non-compact infranil-
manifolds

PROPOSITION 0.3, Let 7w be a discrete subgroup of Isom(G) acting
freely on G. If  is not cocompact, then it is isomorphic to either 1, Z,
Z? or the fundamental group of the Klein bottle.

Proof. For a discrete group 7 to act freely, it is necessary and suf-
ficient that 7 be torsion free. Furthermore, according to Lerama 0.2,
7 contains a normal subgroup I of finite index, which is isomorphic to
a discrete subgroup of G. Since a lattice of G' has (Hirsh) rank 3, '
can be nilpotent of rank 0, 1 or 2. But I" being nilpotent of rank < 2
implies it is abelian. A torsion free group which contains Z of finite
index is Z itself. A torsion free group which contains Z? of finite index
is either Z2 or the fundamental group of Klein bottle. 0

We dencte the fundamental group of Klein bottle by K|, so it has a
presentation

K = (t1,ta,a | [t1,t) = 1,02 = t1,at0a™ = 15 1).
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Affine conjugacy
Let 7 =1,2, Z2 or K. Let

91, 02 N ISOHI(G)

be two discrete embeddings (one-to-one homomorphisms). We say 0,
is conjugate to 6, in Aff(G) if there exists an element o € Afi(G) such
that

03(t) = @ 61(t) - &~

for all ¢ € 7. If this is the case, the resulting manifolds G/6;(r) and
G/0y(r) are affinely diffeomorphic. Therefore, we try to classify all
such discrete embeddings up to affine conjugation.

A 1-dimensional subgroup of @ is of the form
{x':t € R},

for a fixed element x(# ) € G. Let L be a 2-dimensional subgroup of
G. Of course, L is then abelian. It is obvious that any 2-dimensional
abelian subgroup of G must contain the center Z(G). Thus Z(G) C L.

When 7 is the trivial group, there is nothing to do, so we start with
the case where 7 = Z.

1. The case: 71 =27

THEOREM 1.1. An injective discrete representation of Z = ({) into
Isom(G) is affinely conjugate to 8y, 8, or 3 where

01(() = (x07I))
02({) = (Zo, A) with A € 80(2),

03(() = (XQ,T)-

Proof. Clearly each of these representations is injective and discrete.
Moreover, they are affinely distinct from each other.
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Suppose 0(¢) = (x,I) where

"
it
cor
o 8
e N

We want to find

([z] , [a 5]) € R? x GL(2,R) = Aut(G)

)

which conjugates x to zg or xp.

Let us denote the image of x € G on G/Z(G) = R? by X, etc. If
x =0 (i.e,, z = y = 0), then x € Z(G). Any element of GL(2,R) of
determinant % maps X to zg. Thus, conjugation by this automorphism
sends (x,I) to (zo,I). This is of the form 62(¢) = (2o, 4) with A=1.

If X # 0 then 224 y? # 0. One can find a matrix which maps X to Xo
on the quotient G/Z(G). On G, this automorphism maps x to Xo2o°.
But then an inner automorphism can map Xzo® to Xo. Thus, we have
found an automorphism which conjugates (x,I) to (xo,I), Thus, in
this case, we have 81 (¢) = (o, I).

Suppose 0(¢) = (x, A) for some A € SO(2). We want to finda € G

such that
(av I)(X, A)(aa I)—l = (Zo,A),
which is equivalent to a - x - A(a)”! = zg. On the quotient G/Z(G),
we have
a+X— A(@) = Zo.

Since Zg = 0, this is (A — I)a = X. If A € SO(2) and A # I, then
A — I is non-singular. Therefore, there always exists a € G satisfying
(A — I)a = X. With such an a € G, we have

a-x-Afa)"! =zt
for some t € R. Now A; = [8 2] € GL(2,R) maps
1 01 R 1 0 ¢
0 10 to z" =0 1 0j.
0 01 0 0 1
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Thus,

(e, A) ™ (8, I)(x, A)(a, 1) H(e, Ae) = (e, Ar) " (Zo™*", A) (e, Ar)
= (zoi1>A)'
Notice that we used the fact that AA; = AyA. For (zp7}, A), we
conjugate once again by (e, 7) to get (zg, A™!). Note that A~ € SO(2)

also. Consequently, we have obtained 65(¢) = (29, A) with A € SO(2)
and A # I.

Finally, suppose 8(¢) = (x,B) with B € O(2) — SO(2). Let B =
Ry,7. Then
(e, Ryp) ™ (x, B)(e, Ry) = (x/,7)

where x' = R;!(x) € G by Lemma 0.1. Let

If £ =0, (x/,7)%2 = (e, I). Thus, for the representation ¢ — (x’,7) to
be injective, we must have = # 0. A simple calculation shows that

O O
[T
-2 N

1 0 (xy-—-22)/4
(u, (', )(w,I)7! = ((x0)%,7), where u= [0 1 —y/2 ] -
00 1
Now conjugation by [léa: 2] € GL(2,R) ¢ Aut(G) sends ((x0)*,7)

to (xo,7) as we desired. (Again, note that this matrix commutes with
7). This is of the type 63({) = (%o, 7). a

2. The case: 7 =72

PROPOSITION 2.1. A representation

0: 2% = (1, () — Isom(G) = G x O(2)
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is injective and discrete if and only if

0(¢1) = (x,I) and  6(¢2) = (y,])

where
1 z3 =z3 1 1 ys
x=10 1 =z, y=10 1 yo
0 0 1 0 0 1

satisfy

xlz + $22 # 0) (ylayQ) = )\(.’121,:132) for some )‘)
2

and ys3 # A3 + T1Z9.
In this case, the smallest connected Lie subgroup containing x and y
is 2-dimensional, and contains the center Z(G).

Proof. Suppose 6 is of the form described in the statement. We
shall prove @ is a discrete embedding. Since (y1,y2) = A(z1,z2) for
some ), the image of (Z?) in R2 = G/Z(G) lies in a 1-dimensional
subgroup. Therefore, the smallest connected Lie subgroup containing
x and y is at most 2-dimensional. Now the last condition ensures that
the image is not contained in a 1-dimensional subgroup and hence,
6(Z?) is discrete. In fact, the two conditions

2

(y1,y2) = Mz1,22) for some A, and y3 # Az3 + Z1T2

is equivalent to
y # exp(Alogx) (i.e., y # x*).

Conversely, suppose 6 : Z%2 — Isom(G) = G x O(2) is an injec-
tive discrete homomorphism. According to Lemma 0.2, there is a 2-
dimensional subgroup L and a subgroup ‘Z? of Z? of finite index so
that 6(‘Z?) acts on L as pure translations. Clearly, such a subgroup
L =~ R? must contain the center Z(G). This implies that an element
of 8(*Z?) either reverses the orientation of the orthogonal complement
of L or leaves it fixed. Since there is no element of Isom(G) which



3-dimensional non-compact infra-nilmanifolds o A

reverses the orientation, 6('Z?) lies in the group of pure translations
G C Isom(G).

We claim further that the whole group Z? (not just the subgroup
‘Z?) is mapped into G: Suppose 0(¢) = (u, ) € G x O(2) for some
¢ € Z2. We shall show A = I. Since Z? is abelian,

(u, A)(x, I)(u, 4)" = (x,1)

for every x €' Z% < L implies that A(x) = u~!xu for every x € G.
However, A € O(2) can never be equal to an inner automorphism,
unless A = I. (That is, O(2) C Aut(G) — Out(G) is injective).
Therefore, A must be the identity. We have shown that 6(Z°) C G.
Let

(&) = (x,1) and 8(¢2) = (y, I)-

Since L < G contains Z(G), the image 6(Z?) lies in a line when we
project down G to R? = G/Z(G). Thus, there exists A € R such that
(y1,92) = A(z1, z2). The only condition for (x,y) to be discrete is that
they do not lie in a 1-dimensional subgroup of L. Consider the images
in the Lie algebra: logy = Alogx in & if and only if

2

(y1,92) = A(z1,22) and y3=Az3+ T1%2

Thus, (x,y) is discrete if and only if y3 # Azxz + x—zziaslarz. J

The following lemma will be used in Theorem 2.3 and Theorem 2.1.

LEMMA 2.2. Let 8 : Z? — Isom(G) be an injective discrete rep-
resentation. For any set of generators {1,(2} of Z?, there exists an
element f of R? x (O(2) x R*) C R? x GL(2,R) such that, if we set
0'(¢) = f-6(C)- f1, then 8’ is of the form

0'(C1) = (x0,I),  0'(C2) = (X0°20%, I),

or

0'(¢2) = (x0,1), 6'(¢1) = (x0°20", 1),

with some s and non-zero t.
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Proof. According to Proposition 2.1, every injective discrete rep-
resentation of Z? into Isom(G) has its image in the pure translation
group G. Clearly, 6(Z%) ¢ Z(G) =R.

One of #(¢1) and 6({z) is not in Z(G). Assume 8(¢1) € Z(G). This
will yield the first case. There is an element of O(2) x R* ¢ GL(2,R) C
Aut(G), where R* is the group of scalar matrices, which maps 6((;)
to (xow, I) for some w € Z(G). Now using an inner automorphism in
Inn(G) = R?, we can map xoW to just xg. Consequently, we conjugated
6(¢1) to (xo,I). In the course of this conjugation, §(¢{2) becomes of the
form 0(¢2) = (x0°20%,I), for some s,t € R. Thus, by conjugation by
an element of R? x (O(2) x R*), we have made

0(41) = (X01 I)) 0((2) = (XOSZOt, I)
If 0(¢2) ¢ Z(G), we get the second case by the same argument. Clearly,
t cannot be zero, for otherwise the representation will not be discrete.(

THEOREM 2.3. An injective discrete representation of Z? = ((1,(2)
into Isom(G) is affinely conjugate to 6, or 83 where

01(¢1) = (x0,I), 61(¢2) = (x0°20,1),
02(¢1) = (%0°20,1), 62(C2) = (0, 1),

where s € R. For distinct s, the representations are affinely distinct.
However, the resulting manifolds 0(Z?)\G are all diffeomorphic.

Proof. By Lemma 2.2, we may assume that, after conjugating by
an element of R? x (O(2) x R*),

0((1) = (XO) I)) 9((2) = (Xoszot, I)
with ¢ # 0, or the generators (; and (2 interchanged. The automor-
1 0

0 1/t
jugation does not change 6(¢;) = (xo,I). Therefore, conjugation by
(e, C) changes our representation to the desired form. This yields the
representation 0. If the generators ¢; and (2 are interchanged, we get
the representation fo. It is clear that, for distinct s, the representations
are affinely distinct.

For all s, the resulting spaces §(Z2)\G are torus bundles over R!,
therefore they are equivalent as bundles smoothly. So they are diffeo-
morphic to each other. 0

phism C = maps Xo°2zo® to X¢°zg. Observe that this con-
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3. The case: 7 = K (Klein bottle group)
THEOREM 3.1. An injective discrete representation of
K= <t1at2)a I [t1)t2] = 1,052 = t17at2a—1 = t2_1>

into Isom(G) is affinely conjugate to 8y or 8 where

01(tr) = (x0,1), O1(t2) = (20,1), B1(c) = (%0%,7)
ez(tl) = (ZO,I), 92(t2) = (XQ,I), 02(0{) = (Zg%,—I).

Proof. Let 6 : K ¥ Isom(G) be a discrete injective representation.
From Proposition 2.1, we know 6(Z?) lies in L C G C Isom(G) which
contains the center Z(G). Furthermore, Lemma 2.2 says that, after
conjugation by an element of R? x (O(2) x R*), we may assume that

(1) 8(t) = (xo0,1), O(t2) = (x0°20", 1), t#0
or
(2) 0(t2) = (x0,1), O(t1) = (x0"20", 1), t #0.

Since O(2) x R* normalizes O(2), we have
O(a) = (c,C), CeO(2).

The point here is that the matrix C still lies in O(2) after conjuga-
tion. The automorphism C has order 2. The center is a characteristic
subgroup so that C(zg) = zo or zg 1

Case 1: C(z0) =2zo~'. In this case, det(C) = —1 because C(zp) =
det(C) zp. From the presentation of K, we must have
(@ C)P? =0(¢1), (6C)0(E)(e,C) ™ = 8(¢)™!

since 8(a) = (¢, C).
Suppose we are in case (2). Interpreting the second equality on the
quotient R? = G/Z(G), we have
-1
ol

Ce0(2), C [(1)]
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(Note that the image of x¢ in R? is [
We try to find ¢ € G for which

1 . -1 0
0]) ThlsmakesC—A[ 0 1].

(¢,C)? = (x0°z0", 1), £ #0

is satisfied. Let

1 1T 2
c=10 1
0 0 1

On the quotient R?, the above equation is

e cnmom i 2] [ 9] 2] <[5

which implies 4, = 0 and s = 0. Now one can see easily that
Ce=c1.

This implies that the equality (c,C)? = (x0°2¢%,I), t # 0 is never
possible.
Consequently, we must be in case (1).

(€, C)? = (x0,), (¢,C)(x0°20",I)(c;C)™" = (%0°20", I) 7"

The first equality implies that (¢,C) and (xg,I) commute with each
other. In particular, C(Xg) = Xg on the quotient R2. Any C € O(2)
which fixes Xg = e; and has determinant —1 is C = 7. Then it is easy
to see that s must be 0, and ¢ = xo%. Thus

0(t1) = (x0,1), O(t2) = (2%, 1), 6(a)= (x0%,7).

Now conjugation by the automorphism [(1) (l) ] maps zg® to zg without

changing any other generators, because this matrix commutes with 7.
Consequently, we have obtained the representation 6.
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Case 2: C(zn) = zo. If C(20) = 2o, then C € SO(2). The only element
of SO(2) of order 2 is —I. Then, necessarily, it is the case of (2). The
presentation of group K yields s = 0. Thus

0(t2) = (Xo,I), O(tl) = (zot’I)a 0(0{) = (C) —I)

Moreover, O(a)2 = (t;) yields ¢ = zp%’. Now conjugation by the

automorphism (1) (l) maps 2zo' to z¢ without changing any other
¢
generators, because this matrix commutes with —I. Consequently, we
have obtained the representation 6s. ]
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