• Title/Summary/Keyword: isolator

Search Result 469, Processing Time 0.02 seconds

Verification of Micro-vibration Isolation Performance by using Low Rotational Stiffness Isolator under Elevation Direction Operation of the X-band Antenna (저 회전강성 진동 절연기에 의한 X-밴드 안테나의 고각방향 미소진동 절연 효과 검증)

  • Jeon, Su-Hyeon;Lee, Jae-Gyeong;Jeong, Sae-Han-Sol;Lee, Myeong-Jae;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.238-246
    • /
    • 2015
  • A stepping motor is widely used to operate the elevation and azimuth stage of the X-band antenna with 2-axis gimbal system for effective image data transmission from a satellite to a ground station. However, such stepping motor also generates an undesirable micro-vibration which is one of the main disturbance sources affecting image quality of the high-resolution observation satellite. In order to improve the image quality, the micro-vibration isolation of the X-band antenna system is essential. In this study, the low rotational stiffness isolator has been proposed to reduce the micro-vibration disturbance induced by elevation direction operation of the X-band antenna. In addition, its structural safety was confirmed by the structure analysis based on the derived torque budget. The effectiveness of the design was also verified through the micro-vibration measurement test.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Study on the control of VCM and its application to the vibration isolator (VCM의 제어 및 제진 장치 응용에 관한 연구)

  • Kim, Jin-Man;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The degradation of durability and increase of fatigue on the ship are mainly caused by vibration of the engine and rotating machineries. The damper to minimize the influence from vibration is usually attached between the machineries and its base. General damper applied on the vessel is passive damper which is designed to attenuate specified frequency signals, i.e, high frequency vibration signals. But it is hard to anticipate its performance for low frequency signals. In this research, active vibration isolator using VCM is developed to suppress wide band vibration signals. Routh-Huritz's stable condition, ultimate sensitivity method and parameter tuning are applied to derive PID parameters and 2 and 4 phase choppers are also adapted to drive VCM. Simulation and experiments are executed to confirm the effectiveness of the proposed control schemes.

Investigation of Micro-vibration Isolation Performance of SMA Mesh Washer Isolator for Vibration Isolation of X-band Antenna (SMA 메쉬 와셔 진동 절연기를 적용한 X-band 안테나의 미소진동 절연성능 검토)

  • Jeon, Su-Hyeon;Kwon, Sung-Choel;Kim, Dae-Kwan;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.988-995
    • /
    • 2014
  • Two axis gimbal type X-band antenna system has been widely used to effectively transmit the real time image data from the observation satellite to the ground station. The micro-vibration generated by stepping motor actuation and imperfect intermeshed gear configuration of the antenna is one of the sources to degrade the image quality. To guarantee a high quality image of high resolution observation satellite, micro-vibration isolation of X-band antenna is required. In this paper, the X-band antenna vibration isolation system using pseudoelastic SMA(Shape Memory Alloy) mesh washer has been newly suggested. The basic characteristics of the SMA mesh washer isolator proposed in this study has been measured through static load tests and its effectiveness has been demonstrated by the micro-vibration isolation test of the X-band antenna.

A Study of Seismic Resistant Design for Base-Isolated Bridges(II) (지진에 대비한 기초분리 교량의 설계법에 관한 연구(II))

  • Lee, Sang Soo;Yu, ChulSoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.637-647
    • /
    • 1997
  • As stated in Part(I), the use of the isolator is meant to protect a structure from seismic risk, by concentrating the inelastic deformations to relatively cheap and replaceable devices while the rest of the structures remains elastic. This research has been carried out to investigate the effects of various structural parameters and isolator characteristics on the seismic response of Base Isolated Bridges. Simplified analysis method for practical design is developed by using the results. The Proposed Code-Type approach method can be used to estimate the inertial forces accurately, not only at the isolator but throughout the height of the Base-Isolated Bridges. The proposed method is recommended to use in preliminary design tool or even a final design tool for Base Isolated Bridges. For the validation of simplified design method, examples with artificial earthquake time history and design response spectrum for P.C Box Bridge with bilinear hysteretic steel damper are evaluated.

  • PDF

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing (반도체 생산에서 진동 제어를 위한 전자기 에어 스프링)

  • Kim, Hyung-Tae;Kim, Cheol-Ho;Lee, Kang-Won;Lee, Gyu-Seop;Son, Sung-Wan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1128-1138
    • /
    • 2010
  • One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.

Evaluation on Fatigue Behavior of EP(Engineering Plastic) Friction Pendulum Bearing System (EP가 적용된 마찰 진자형 지진격리받침의 피로거동분석)

  • Choi, Jung-Youl;Park, Hee-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.703-708
    • /
    • 2020
  • As the risk of earthquakes increases recently, earthquake-resistant designs were getting interest. For this reason, this study applies that Friction pendulum-type seismic isolator is a device that attenuates seismic energy by friction and pendulum motion. The friction pendulum-type seismic isolator of this study is very easy to transport, install and maintain with light weight of metal by applying the slider using high strength engineering plastic. In addition, there is an advantage that the corrosion resistance is very excellent compared to the existing metal parts. However, there is concern about long-term durability by replacing metal materials. In this study, the frictional pendulum-type seismic isolator with EP was applied to compressive-shear test, repeated fatigue test, and ultimate load test after fatigue test, and analyzed the deformation and shear or properties after the test. As the results, the adequacy of long term fatigue durability was experimentally proven.

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

Study on the Performance Verification of PRB Isolation Device using Simulation and Experiment (PRB 지진격리장치의 성능 검증을 위한 해석 및 실험적 연구)

  • Kim, Sung-Jo;Kim, Se-Yun;Ji, Yongsoo;Kim, Bongsik;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.311-318
    • /
    • 2020
  • This study introduces a technique for improving the elastomeric-isolator performance using modular devices. The modular devices are shear resistance block, polymer spring, displacement acceptance guide, and anti-falling block. They are installed on the elastomeric isolator as a supplementary device. Each modularized device improves the isolator performance by performing step-by-step actions according to the seismic intensity and displacement. The PRB isolation device works in four stages, depending on the seismic magnitude, to satisfy the target performance. It is designed to accommodate design displacement in the first stage and large magnitude of earthquakes in the second and third stages. This design prevents superstructures from falling in the fourth stage due to large-magnitude earthquakes by increasing the capacity limit of the elastomeric isolator. In this study, the PRB isolation device is analyzed using finite element analysis to verify that the PRB isolation device works as intended and it can withstand loads corresponding to large-magnitude earthquakes. The performance of the PRB isolation device is validated by the analysis, which is further corroborated by actual experiments.

Full-scale Shaking Table Test of Uninterruptible Power Supply Installed in 2-stories Steel Structure (2층 철골 구조물에 설치된 무정전전원장치의 실규모 진동대 실험연구)

  • Lee, Ji-Eon;Park, Won-Il;Choi, Kyoung-Kyu;Oh, Sang-Hoon;Park, Hoon-Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.29-38
    • /
    • 2022
  • In this study, the shaking table tests were carried out on six types of non-structural elements installed on a full-scale two-story steel structure. The shaking table tests were performed for non-structural elements with and without seismic isolators. In this study, the seismic performance of Uninterruptible Power Supply (UPS) specimens was tested and investigated. Non-seismic details were composed of conventional channel section steel beams, and the seismic isolators were composed of high damping rubber bearing (HDRB) and wire isolator. The input acceleration time histories were artificially generated to satisfy the requirements proposed by the ICC-ES AC156 code. Based on the test results, the damage and dynamic characteristics of the UPS with the seismic isolator were investigated in terms of the natural frequency, damping ratio, acceleration time history responses, dynamic amplification factors, and relative displacements. The results from the shaking table showed that the dynamic characteristics of the UPS including the acceleration response were significantly improved when using the seismic isolator.