• Title/Summary/Keyword: isolation systems

Search Result 783, Processing Time 0.031 seconds

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

Optimum parameters and performance of tuned mass damper-inerter for base-isolated structures

  • Jangid, Radhey Shyam
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.549-560
    • /
    • 2022
  • The optimum damping and tuning frequency ratio of the tuned mass damper-inerter (TMDI) for the base-isolated structure is obtained using the numerical searching technique under stationary white-noise and filtered white-noise earthquake excitation. The minimization of the isolated structure's mean-square relative displacement and absolute acceleration, as well as the maximization of the energy dissipation index, were chosen as the criteria for optimality. Using a curve-fitting technique, explicit formulae for TMDI damping and tuning frequency for white-noise excitation are then derived. The proposed empirical expressions for TMDI parameters are found to have a negligible error, making them useful for the effective design of base-isolated structures. The effectiveness of TMDI and its optimum parameters are influenced by the soil condition and isolation frequency, according to the comparison made of the optimized parameters and response with different soil profiles. The effectiveness of an optimally designed TMDI in controlling the displacement and acceleration response of the flexible isolated structure under real and pulse-type earthquakes is also observed and found to be increased as the inertance mass ratio increases.

Design and Graphic Simulation of a Cleaning Robot for a Radioactive Environment Application

  • Kim, K.;Park, J.;M. Yang;C. Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.3-161
    • /
    • 2001
  • This paper describes design features of a cleaning robot for use in a radioactive zone of the Isolation room of the Irradiated Material Examination Facility (IMEF) at Korea Atomic Energy Research Institute (KAERI). This cleaning robot is intended to completely eliminate human interaction with hazardous radioactive contaminants. The clean ing robot that is operated either by manual mode or by autonomous mode is designed to be capable of cleaning the isolation room´s floor surface and collecting dry nuclear fuel debris and other radioactive waste placed on the floor. The functional, mechanical and electrical design considerations of the cleaning robot in terms of remote cleanup operation and remote maintenance at a radioactive environment are presented. A graphical representation of the cleaning ...

  • PDF

Isolation and Identification of Active Components from Natural Products (식의약소재 천연자원으로부터 유효성분 규명 연구)

  • Yeong-Geun Lee;Nam-In Baek;Se Chan Kang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.10-10
    • /
    • 2021
  • Natural products have been used as drugs and cosmetics due to their bioactivity and their biochemical diversity. Natural products usually refer to secondary metabolites produced by various living organisms including marine animals, insects, microbes, amphibians, and plants. These secondary metabolites, which usually have molecular weights less than 2,000 amu, are unnecessary for survival, development, growth, and reproduction but play major roles in plant defense systems against other species. These secondary metabolites such as lignans, flavonoids, monoterpenes, and phenylethanoid glycosides showed various biological activities like anti-oxidant behavior, anti-cancer properties, neuroprotective properties, and so forth. Thus, isolation and elucidation of secondary metabolites from living organisms is of great significance to human life.

  • PDF

Seismic Performance Evaluation of Piping System Crossing the Isolation Interface in Seismically Isolated NPP (면진 원전 면진-비면진구간 연결 배관의 내진성능 평가)

  • Hahm, Daegi;Park, Junhee;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-150
    • /
    • 2014
  • A methodology to evaluate the seismic performance of interface piping systems that cross the isolation interface in the seismically isolated nuclear power plant (NPP) was developed. The developed methodology was applied to the safety-related interface piping system to demonstrate the seismic performance of the target piping system. Not only the seismic performance for the design level earthquakes but also the performance for the beyond design level earthquakes were evaluated. Two artificial seismic ground input motions which were matched to the design response spectra and two historical earthquake ground motions were used for the seismic analysis of piping system. The preliminary performance evaluation results show that the excessive relative displacements can occur in the seismically isolated piping system. If the input ground motion contained relatively high energy in the low frequency region, we could find that the stress response of the piping system exceed the allowable stress level even though the intensity of the input ground motion is equal to the design level earthquake. The structural responses and seismic performances of piping system were varied sensitively with respect to the intensities and frequency contents of input ground motions. Therefore, for the application of isolation system to NPPs and the verification of the safety of piping system, the seismic performance of the piping system subjected to the earthquake at the target NPP site should be evaluated firstly.

Seismic Response Analysis of Support-Isolated Equipment in Primary Structure (감진계통 지지부가 설치된 기기의 지진해석)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1992
  • The effectiveness of the support-isolation system for the equipment mounted on the primary structure is evaluated to reduce its responses under the earthquake load with considering the interaction between the primary structure and the internal equipment in this paper. A computer code (KBISAP) is developed to analyze the above system using the matrix condensation technique and constant average acceleration method. To evaluate the effectiveness of the support-isolation system, three systems are used in this study as follows: i) fixed-base structure with support-fixed equipment, ii) base-isolated structure with support-fixed equipment and iii) fixed-base structure with support-isolated equipment. The results of case study show that the acceleration of equipment with the support-isolation system is less than that of the support-fixed equipment in the base-isolated structure and significantly reduced the response compared with that of the support-fixed equipment in the fixed-base structure with the reduction factor of 8. The support-isolation system used in this study can reduce the response and also increase the safety margin of the important safety-related internal equipments.

  • PDF

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.

Response modification factors of concrete bridges with different bearing conditions

  • Zahrai, Seyed Mehdi;Khorraminejad, Amir;Sedaghati, Parshan
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • One of the shortcomings of seismic bridge design codes is the lack of clarity in defining the role of different seismic isolation systems with linear or nonlinear behavior in terms of R-factor. For example, based on AASHTO guide specifications for seismic isolation design, R-factor for all substructure elements of isolated bridges should be half of those expressed in the AASHTO standard specifications for highway bridges (i.e., R=3 for single columns and R=5 for multiple column bent) but not less than 1.50. However, no distinction is made between two commonly used types of seismic isolation devices, i.e., elastomeric rubber bearing (ERB) with linear behavior, and lead rubber bearing (LRB) with nonlinear behavior. In this paper, five existing bridges located in Iran with two types of deck-pier connection including ERB and LRB isolators, and two bridge models with monolithic deck-pier connection are developed and their R-factor values are assessed based on the Uang's method. The average R-factors for the bridges with ERB isolators are calculated as 3.89 and 4.91 in the longitudinal and transverse directions, respectively, which are not in consonance with the AASHTO guide specifications for seismic isolation design (i.e., R=3/2=1.5 for the longitudinal direction and R=5/2=2.5 for the transverse direction). This is a clear indicator that the code-prescribed R-factors are conservative for typical bridges with ERB isolators. Also for the bridges with LRB isolators, the average computed R-factors equal 1.652 and 2.232 in the longitudinal and transverse directions, respectively, which are in a good agreement with the code-specified R-factor values. Moreover, in the bridges with monolithic deck-pier connection, the average R-factor in the longitudinal direction is obtained as 2.92 which is close to the specified R-factor in the bridge design codes (i.e., 3), and in the transverse direction is obtained as 2.41 which is about half of the corresponding R-factor value in the specifications (i.e., 5).