• Title/Summary/Keyword: isoform

Search Result 325, Processing Time 0.023 seconds

TAp73 and ΔNp73 Have Opposing Roles in 5-aza-2'-Deoxycytidine-Induced Apoptosis in Breast Cancer Cells

  • Lai, Jing;Yang, Fang;Zhang, Wenwen;Wang, Yanru;Xu, Jing;Song, Wei;Huang, Guichun;Gu, Jun;Guan, Xiaoxiang
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.605-612
    • /
    • 2014
  • The p73 gene contains an extrinsic P1 promoter and an intrinsic P2 promoter, controlling the transcription of the pro-apoptotic TAp73 isoform and the anti-apoptotic ${\Delta}Np73$ isoform, respectively. The DNA methylation status of both promoters act equally in the epigenetic transcriptional regulation of their relevant isoforms. The aim of this study was to analyze the different effects of these p73 isoforms in 5-aza-2'-deoxycytidine (5-aza-dC)-induced apoptosis in breast cancer cells. We investigated the effects of the DNA demethylation agent, 5-aza-dC, on the T-47D breast cancer cell line, and evaluated the methylation status of the p73 promoters and expression of TAp73 and ${\Delta}Np73$. Furthermore, we assessed the expression of p53 and p73 isoforms in 5-aza-dC-treated T-47D cells and p53 knockout cells. 5-aza-dC induced significant anti-tumor effects in T-47D cells, including inhibition of cell viability, G1 phase arrest and apoptosis. This was associated with p73 promoter demethylation and a concomitant increase in TAp73 mRNA and protein expression. In contrast, the methylation status of promoter P2 was not associated with ${\Delta}Np73$ mRNA or protein levels. Furthermore, demethylation of P2 failed to inhibit the expression of ${\Delta}Np73$ with 5-aza-dC in the p53 knockdown cell model. Our study suggests that demethylation of the P1 and P2 promoters has opposite effects on the expression of p73 isoforms, namely up-regulation of TAp73 and down-regulation of ${\Delta}Np73$. We also demonstrate that p53 likely contributes to 5-aza-dC-induced ${\Delta}Np73$ transcriptional inactivation in breast cancer cells.

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Characterization for calmodulin binding activity of IQ motifs on the IQGAP3 (IQGAP3에 존재하는 IQ 부위의 칼모듈린 결합 특성)

  • Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.333-338
    • /
    • 2012
  • IQ motif-containing GTPase-activating proteins (IQGAPs), which are well-known $Ca^{2+}$-independent calmodulin (CaM) binding proteins, are involved in various cellular functions such as cell proliferation, carcinogenesis and cell migration. The IQGAP3 similar to IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been recently shown that all four IQ motifs of the IQGAP1 could bind to CaM, while not clear the binding of four IQ motifs of the IQGAP3. In this study, we examined the binding between CaM and each IQ motif of IQGAP3. As a result, we found that IQ2 and IQ3, but not IQ1 and IQ4, have a $Ca^{2+}$-independent CaM binding activity. We also found that IQ(3.5-4.4) on the IQGAP3 has $Ca^{2+}$-dependent CaM binding activity as similar with that of IQGAP1. This finding indicates that IQ motifs of the IQGAP3 plays a dynamic role via different interaction of IQ motifs with $Ca^{2+}$/CaM or apoCaM.

Expression of the Second Isoform of Gonadotropin-Releasing Hormone (Chicken GnRH-II Type) in the First Trimester Human Placenta (임신초기 사람의 태반조직에서 GnRH-II mRNA와 Peptide의 발현)

  • Cheon, Kang-Woo;Hong, Sung-Ran;Lee, Hyoung-Song;Kang, Inn-Soo
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.81-88
    • /
    • 2001
  • Gonadotropin-releasing hormone (GnRH) has been known to play a role in the regulation of hCG secretion by human placenta. Recently, a gene encoding the second f개m of GnRH (GnRH-II) was identified in human. Herein, we demonstrate that GnRH-II is expressed in human placenta and assess GnRH-II expression by nested RT-PCR and immunohistochemistry in human placenta during the first trimester. We found that two altematively spliced transcripts of GnW-II mRNA were expressed in human placental tissues of first trimester and the shorter variant had a 21-bp deletion in GnRH-associated peptide (GAP). Immunoreactive GnRH-II was localized in both cytotrophoblastic and syncytiotrophoblastic cytoplasm. The immunostaining intensity was stronger in cytotrophoblast. Villous stromal cells also showed GnRH-II immunoreactiyiry. The results of our study report that the second isoform of GnRH (GnRH-II) is expressed in the first trimester human placenta and we suggest that GnRH-II may also play a regulatory role in maintenance of early pregnancy and hCG secretion in human placenta.

  • PDF

Relationship between the Regulator of Calcineurin 1-4 Isoform and In Vitro Osteoclast Differentiation (Regulator of calcineurin 1-4과 파골세포 분화의 관련성)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2015
  • Regulator of calcineurin 1 (RCAN1) is an endogenous calcineurin inhibitor that plays an important role in the pathogenesis of diseases related to the calcineurin-NFATc1 signaling pathway. The RCAN1-4 isoform is subject to NFATc1-dependent regulation. During receptor activator of nuclear factor kappa-B ligand (RANKL)-stimulated osteoclastogenesis, the calcineurin-NFATc1 pathway is critical. Because there is little information available on the role of RCAN1 in osteoclast differentiation, this study investigated whether changes in RCAN1 expression are related to the calcineurin-NFATc1 pathway and osteoclast differentiation. Mouse bone marrow monocytes (BMMs) were treated with 50 ng/ml of RANKL and M-CSF. Expression levels of NFATc1, calcineurin, and RCAN1 isoforms were determined using RT-PCR and Western blotting. Osteoclast differentiation was examined using tartrate-resistent acid phosphatase (TRAP) staining. To evaluate the effect of RCAN1 overexpression on osteoclastogenesis, cells were transfected with a mouse RCAN1-4 cDNA plasmid. After RANKL stimulation of BMMs, expression of NFATc1 and RCAN1 was increased at the mRNA and protein level, while calcineurin expression was unchanged. When the RCAN1-4 gene construct was transfected, the expression of RCAN1 protein was not increased despite several-fold increases in RCAN1-4 mRNA expression. Regardless of RANKL stimulation, over-expression of RCAN1-4 tended to reduce NFATc1 expression and knock-down of RCAN1 increase it. While BMMs transfected with the RCAN1-4 vector were differentiated into distinct osteoclasts, their phenotypes did not vary from those of mock controls. These results suggest that RCAN1 has a limited effect on the calcineurin-NFATc1 pathway during RANKL-stimulated osteoclast differentiation.

Purification of Two Novel Antimicrobial Peptides from Pyloric Caeca of the Starfish Asterina pectinifera (별불가사리 Asterina pectinifera의 유문맹낭 추출물로부터 새로운 2종류의 항균활성 펩타이드의 정제)

  • Go, Hye-Jin;Bae, Yun Jung;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.860-864
    • /
    • 2014
  • PAP-1, a novel antimicrobial peptide isolated from pyloric caeca extract of the starfish Asterina pectinifera was purified and characterized. First, the acidified pyloric caeca extract was put through Sep-Pak C18 solid phase extraction cartridge using a stepwise gradient. Among the eluents, RM 60 (retained materials at 60% methanol) showed good antimicrobial activity against Bacillus subtilis and Escherichia coli D31 and was purified in C18 reversed-phase and ion-exchange high-performance liquid chromatography columns. The purification steps yielded two novel peptides showing strong antimicrobial activities. These peptides were named pyloric caeca A. pectinifera peptide 1 and 2 (PAP-1 and PAP-2). For the characterization of the purified peptides, the molecular weights and amino acid sequences were determined by MALDI-TOF MS and Edman degradation. The molecular weights of PAP-1 and PAP-2 were about 2951.54 Da and 2980.15 Da respectively. The amino acid sequences of PAP-1 and PAP-2 were partially determined: AIQNAGES and AIQNAAES, respectively. PAP-2 is an isoform of PAP-1, differing merely by a single residue at position 6 (glycine or alanine). The comparison of the N-terminal amino acid sequences and molecular weights of the peptides with those of other known antimicrobial peptides revealed that PAP-1 and PAP-2 have no homology with any known peptides. These findings suggest that PAP-1 and PAP-2 play a significant role in the innate defense system of starfish pyloric caeca.

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

Interaction of GAT1 with Ubiquitin-Specific Protease Usp14 in Synaptic Terminal (GAT1과 ubiquitin-specific protease Usp14의 결합)

  • Seog, Dae-Hyun;Kim, Sang-Jin;Joung, Young-Ju;Yea, Sung-Su;Park, Yeong-Hong;Kim, Moo-Seong;Moon, Il-Soo;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1005-1011
    • /
    • 2010
  • $\gamma$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABA transporters (GATs) control extracellular GABA levels by reuptake of released GABA from the synaptic cleft. However, how GATs are regulated has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of GAT1, the major isoform in the brain and find a specific interaction with the ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme. Usp14 protein bound to the tail region of GAT1 and GAT2 but not to other GAT members in the yeast two-hybrid assay. The C-terminal region of Usp14 is essential for interaction with GAT1. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT1 specifically co-immunoprecipitated Usp14 from mouse brain extracts. These results suggest that Usp14 may regulate the number of GAT1 at the cell surface.

Molecular Cloning and Expression of the Metallothionein Gene under Environmental Stresses in Sweet Potato (고구마 metallothionein 유전자의 클로닝 및 환경 스트레스 하에서 발현 분석)

  • Kim, Young-Hwa;Yu, Eun Jeong;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1415-1420
    • /
    • 2017
  • The metallothionein (MT) gene (IbMT3) was selected from an EST library of suspension-cultured sweet potato cells. The MT gene, which is one of abundant ESTs in the library, is involved in stress regulation of cells and tissues. A full-length IbMT3 cDNA was obtained and analysis of its nucleotide sequence revealed that IbMT3 encoded a type 3 MT protein, based on its structural characteristics. The function of type 3 MT in plants is not yet known. Northern blot analysis showed stronger expression of IbMT3 in suspension-cultured cells than in sweet potato plant leaves. Since cell culture is known to impose a state of oxidative stress on cells, sweet potato plants were subjected to oxidative stress to investigate the transcriptional regulation of IbMT3. When the herbicide methyl viologen (MV) was administered for 6, 12, and 24 hr, IbMT3 transcription rapidly increased at 6 hr and then decreased. A cold treatment at $15^{\circ}C$ for 24 and 48 hr resulted in a gradual increase in IbMT3 expression. These findings indicate that IbMT3 expression is regulated in response to environmental and oxidative stress. IbMT3 isoform is expected to have antioxidant effects in sweet potato plants and may play an important role in cellular adaptation to oxidative stress.

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.