• Title/Summary/Keyword: isocenter

Search Result 132, Processing Time 0.019 seconds

Usability Evaluation of Lateral Sliding Table in CT Examination (CT 검사에서 Lateral Sliding Table의 유용성 평가)

  • Choi, Jeong Hun;Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.677-684
    • /
    • 2020
  • Miscentering in the left and right X axis direction during CT examination affects dose and quality. When the CT Gantry Isocenter and the center of the examination objective are matched using the Lateral Sliding Table, the image quality is improved and the exposure dose is reduced. CTDI Head Phantom (Kimda, Korea) and dosimeter (Ray Safe, Sweden) were used to measure dose comparison CTDI (mGy) due to center deviation, and Water Phantom (HITACHI, Japan) was used to measure noise to see the difference in uniformity due to center deviation. Measurements of doses for dose comparison CTDI (mGy) with a deviation showed that doses were consistently reduced and exact dose was not projected until they were moved to 80 mm by 20 mm from the Isocenter. SD values were measured to see the difference in uniformity due to center deviation and the noise continued to increase until it was moved by 20 mm to 80 mm. The range of collimation has increased by the extent of deviating from the center and the range of exposure has increased. Using the Lateral Sliding Table, you can easily adjust the Isocenter, increase the quality of the image by adjusting the Isocenter in areaa such as the cardiac examination of the location away from the Isocenter, Extreme bone and Shoulder, and greatly reduce the collimation to the Isocenter, so it can be used to reduce unnecessary exposure dose.

Rapid Optimization of Multiple Isocenters Using Computer Search for Linear Accelerator-based Stereotactic Radiosurgery (Multiple isocenter를 이용한 뇌정위적 방사선 수술시 컴퓨터 자동 추적 방법에 의한 고속의 선량 최적화)

  • Suh Tae-suk;Park Charn Il;Ha Sung Whan;Yoon Sei Chul;Kim Moon Chan;Bahk Yong Whee;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.109-115
    • /
    • 1994
  • The purpose of this paper is to develop an efficient method for the quick determination of multiple isocenters plans to provide optimal dose distribution in sterotactic radiosurgery. A Spherical dose model was developed through the use of fit to the exact dose data calculated in a 18cm diameter of spherical head phantom. It computes dose quickly for each spherical part and is useful to estimate dose distribution for multiple isocenters. An automatic computer search algorithm was developed using the relationship between the isocenter move and the change of dose shape, and adapted with a spherical dose model to determine isocenter separation and cellimator sizes quickly and automatically. A spheric81 dose model shows a comparable isodose distribution with exact dose data and permits rapid calculations of 3-D isodoses. the computer search can provide reasonable isocenter settings more quickly than trial and error types of plans, while producing steep dose gradient around target boundary. A spherical dose model can be used for the quick determination of the multiple isocenter plans with 3 computer automatic search. Our guideline is useful to determine the initial multiple isocenter plans.

  • PDF

Evaluation of the effect of mechanical deformation on beam isocenter properties of the SC200 scanning beam delivery system

  • Wang, Ming;Zheng, Jinxing;Song, Yuntao;Li, Ming;Zeng, Xianhu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2064-2071
    • /
    • 2020
  • For proton pencil beam scanning (PBS) technology, the accuracy of the dose distribution in a patient is sensitive to the properties of the incident beam. However, mechanical deformation of the proton therapy facility may occur, and this could be an important factor affecting the proton dose distribution in patients. In this paper, we investigated the effect of deformation on an SC200 proton facility's beam isocenter properties. First, mechanical deformation of the PBS nozzle, L-shape plate, and gantry were simulated using a Finite Element code, ANSYS. Then, the impact of the mechanical deformation on the beam's isocenter properties was evaluated using empirical formulas. In addition, we considered the simplest case that could affect the properties of the incident beam (i.e. if only the bending magnet (BG3) has an error in its mounting alignment), and the effect of the beam optics offset on the isocenter characteristics was evaluated. The results showed that the deformation of the beam position in the X and Y direction was less than 0.27 mm, which meets the structural design requirements. Compared to the mechanical deformation of the L-shape plate, the deformation of the gantry had more influence on the beam's isocenter properties. When the error in the mounting alignment of the BG3 is equal to or more than 0.3 mm, the beam deformation at the isocenter exceeds the maximum accepted deformation limits. Generally speaking, for the current design of the SC200 scanning beam delivery system, the effects of mechanical deformation meet the maximum accepted beam deformation limits. In order to further study the effect of the incident beam optics on the isocenter properties, a fine-scale Monte Carlo model including factors relating to the PBS nozzle and the BG3 should be developed in future research.

방사선 수술시 자동적인 선량분포의 최적화를 위한 예비 연구

  • 최경식;오승종;서태석;이형구;최보영
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.38-38
    • /
    • 2003
  • 목적 : 방사선 수술의 목적은 병소에 최대한의 방사선을 조사하고, 주위의 정상조직에는 가능한 적은 양의 방사선을 조사하는 것이다. 이러한 목적을 만족시키기 위해 방사선 수술계획자는 계획시 isocenter의 위치와 개수, 콜리메이터 크기를 변화시켜 가며, 주어진 병소에 맞는 선량분포를 획득해 방사선 수술효과를 최대화시키는 수술계획을 수립한다. 본 연구에서는 다양한 모양의 병소에 대해 자동적으로 isocenter를 위치시켜 수술 계획시 도움이 될 수 있도록 임의의 병소 모델들에 대해 위의 변수들을 변화시켜 가며 얻어지는 선량분포를 비교 분석하였다. 방법 : 본 연구에서는 임의로 정의한 계산 영역내에 다면체를 병소로 가정하여 연구를 수행하였다. 방사선 수술시 하나의 isocenter에서 얻어지는 선량분포는 구형으로 근사할 수 있으므로 하나의 isocenter를 구로 근사하여, 각 병소 모델 내에 콜리메이터 크기를 변화해가며 가능한 많은 영역을 포함하도록 isocenter를 배치시켰다. 이후 구형선량모델을 사용해 선량분포를 획득하여 병소와 정상조직간의 DVH(Dose Volume histogram)와 각 병소 모델에 대한 통일 평면상의 선량분포를 비교 분석하였다. 결과 ; 임의의 다양한 종양 모델에 대한 50%의 등선량 곡선내에서 세 가지의 빔관련 변수들을 변화시킨 결과, 종양이 없는 정상 조직에서는 선량분포가 극히 낮았으며, 콜리메이터의 크기에 따른 isocenter 의 개수가 변화하는 것을 확인할 수 있었고, 이 경우 한 종양모델에서의 깊이에 따른 선량 분포는 크게 차이가 나지 않았다. 그리고, isocenter의 개수가 변화함에 따라 선량곡선이 변하는 것을 확인할 수 있었다. 결론 : 빔관련 변수인 콜리메이터 크기, isocenter 개수, 거리등은 어느 일정 정도를 넘기면, 병소내 선량 분포에 크게 기여하지 않는다는 점을 감안하여 빔관련 변수들을 최소로 고려하므로써 계획시 소모되는 시간 과 노력을 많이 줄일 수 있을 것이며, 또한 각 병소 모델에 대한 최적의 구형선량모델에서 공통적인 규칙성을 찾는 것과 실제 병소의 모양을 간단한 모양으로 근사화 시킨다면 자동적 선량모델을 이루는데 많은 도움이 되고, 이로 인해 효율적인 치료계획작업이 이루어질 것이라 사료된다.

  • PDF

A Comparison Study with the Vatiation of Isocenter and Collimator in Stereotactic Radiosurgery (방사선 수술시 Isocenter, 콜리메이터 변수에 따른 선량 분포 비교연구)

  • 오승종;박정훈;곽철은;이형구;최보영;이태규;김문찬;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.129-134
    • /
    • 2002
  • The radiosurgery is planned that prescribed dose was irradiated to tumor for obtaining expected remedial value in stereotactic radiosurgery. The planning for many irregular tumor shape requires long computation time and skilled planners. Due to the rapid development in computer power recently, many optimization methods using computer has been proposed, although the practical method is still trial and error type of plan. In this study, many beam variables were considered and many tumor shapes were assumed cylinderical ideal models. Then, beam variables that covered the target within 50% isodose curve were searched, the result was compared and analysed. The beam variables considered were isocenter separation distance, number of isocenters and collimator size. Dose distributions obtained with these variables were analysed by dose volume histogram(DVH) and dose profile at orthogonal plane. According to the results compared, the use of more isocenters than specified isocenter dosen't improve DVH and dose profile but only increases complexity of plan. The best result of DVH and dose profile are obtainedwhen isocenter separation was 1.0-1.2 in using same number of isocenter.

  • PDF

Optimization of Dose Distribution for LINAC-based Radiosurgery with Multiple Isocenters (LINAC 뇌정위적 방사선 수술시 Multiple Isocenters를 이용한 최적 선량분포 계획)

  • Suh Tae-Suk;Yoon Sei Chul;Shinn Kyung Sub;Bahk Yong Whee
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.351-359
    • /
    • 1991
  • The current LINAC technique for radiosurgery utilizes a single isocenter approach with multiple noncoplanar arcs. This approach results in spherical dose distributions in the target. Many arteriovenous malformations and tumors suitable for radiosurgical treatment have non-spherical or irregular shapes. The basic approach presented in this paper is to use two or multiple isocenters with standard arcs to shape irregular target volumes through the use of multiple spherical targets. Selection of reasonable irradiation parameters in the first stage is critical to the success of real-time optimization. A useful guideline for optimum isocenter separation and collimator size is developed to shape the target margin uniformly with an desired isodose surface for an elongated target. The implementation of multiple isocenters with three dimensional dose model and application of multiple isocenters approach to several cases are discussed.

  • PDF

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

Assessment on Accuracy of Stereotactic Body Radiation therapy (SBRT) using VERO (VERO system을 이용한 정위적 체부 방사선치료(SBRT)의 정확성 평가)

  • Lee, Wi Yong;Kim, Hyun Jin;Yun, Na Ri;Hong, Hyo Ji;Kim, Hong Il;Baek, Seung Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Purpose: The present study aims to assess the level of coherency and the accuracy of Point dose of the Isocenter of VERO, a linear accelerator developed for the purpose of the Stereotactic Body Radiation Therapy(SBRT). Materials and Method: The study was conducted randomly with 10 treatment plans among SBRT patients in Kyungpook National University Chilgok Hospital, using VERO, a linear accelerator between June and December, 2018. In order to assess the equipment's power stability level, we measured the output constancy by using PTW-LinaCheck, an output detector. We also attempted to measure the level of accuracy of the equipment's Laser, kV(Kilo Voltage) imaging System, and MV(Mega Voltage) Beam by using Tofu Phantom(BrainLab, Germany) to assess the accuracy level of geometrical Isocenter. We conducted a comparative analysis to assess the accuracy level of the dose by using an acrylic Phantom($30{\times}30{\times}20cm$), a calibrated ion chamber CC-01(IBA Dosimetry), and an Electrometer(IBA, Dosimetry). Results: The output uniformity of VERO was calculated to be 0.66 %. As for geometrical Isocenter accuracy, we analyzed the error values of ball Isocenter of inner Phantom, and the results showed a maximum of 0.4 mm, a minimum of 0.0 mm, and an average of 0.28 mm on X-axis, and a maximum of -0.4 mm, a minimum of 0.0 mm, and an average of -0.24 mm on Y-axis. A comparison and evaluation of the treatment plan dose with the actual measured dose resulted in a maximum of 0.97 % and a minimum of 0.08 %. Conclusion: The equipment's average output dose was calculated to be 0.66 %, meeting the ${\pm}3%$ tolerance, which was considered as a much uniform fashion. As for the accuracy assessment of the geometric Isocenter, the results met the recommended criteria of ${\pm}1mm$ tolerance, affirming a high level of reproducibility of the patient's posture. The difference between the treatment plan dose and the actual measurement dose was calculated to be 0.52 % on average, significantly less than the 3 % tolerance, confirming that it obtained predicted does. The current study suggested that VERO equipment is suitable for SBRT, and would result in notable therapeutic effect.

Fractionated Stereotactic Radiotherapy (FSRT) Using Gold Markers : A Comparison of the Isocenter between Multiple Arcs and Static Conformal Beams (금속표지자를 이용한 다중호형 정위방사선치료와 입체조형 정위방사선치료의 회전중심점 비교)

  • 장지영;김기환;김재성;김준상;송창준;김선환;조문준
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • The aim of the study was to assess the isocenter deviation between multiple arcs and conformal beams in frameless FSRT. Forty seven patients received single isocenter radiosurgery or therapy (SRS/T) using available framelss FSRT system from Aug. 1997 to Dec. 2m. In choosing multiple arc FSRT or conformal FSRT, we had considered one of two techniques with respect to tumor size and tumor shape. In multiple arc FSRT, the average and standard deviation (SD) of the isocenter deviation was 0.2 mm (SD 0.2 mm), 0.2 mm (SD 0.2) and 0.3 mm (SD 0.2 mm)in the lateral (x), anterior-posterior (y) and cranio-caudal directions (z). In conformal FSRT, the average deviation and SD of the isocenter deviation was 0.2 mm (SD 0.2 mm), 0.3 mm(0.2 mm) and 0.4 mm (SD 0.2 mm) in the x, y and z directions. The average spacial deviation ($\Delta$r) was 0.41 mm and 0.54 mm in multiple arcs and conformal beams, respectively. The isocenter deviation using frameless FSRT system was similar value between multiple arcs and conformal beams. In practice, we believed we can select the appropriate treatment technique according to tumor shape and size.

  • PDF

Practicability Assessment of Spherical Type Mechanical Check Device (SMCD) (Mechanical Check용 Spherical Device의 제작 및 특성 평가)

  • Lee, Byung-Koo;Kim, Gun-Oh;Kweon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2007
  • Purpose: Digital medical image commenced with an introduction of PACS has become more popular today in the radiation diagnosis and medical treatment and made great progress, in particular, for medical testing field, whereas it has made slow progress for radiation therapy area. In order to accommodate the current trend of digital from analog, a spherical type mechanical check device (SMCD) that is form of spherical differing from the existing form of flat or cube has been designed and tested its practicability to replace the part in mechanical check with digital image from QA operation. Materials and Methods: If the distance maintains constant between source(target) and image detector with constant distance to the center of spherical type mechanical check device(SMCD), the size will be shown as a constant image at all times regardless of its direction exposed. For the test, two accurate hemispheres are made and put together which results in a sphere of the equilateral circle. Results: It enables a variety of implementation of the existing mechanical check using digital image as follows: congruity level of radiation field and light field, size accuracy of radiation field and collimation field, gantry rotation isocenter check, collimation rotation isocenter check, room laser accuracy check, collimation rotation angle check, couch rotation angle check, and more. Conclusion: It has proved its practicability in checking isocenter congruity level as real time at the time of simultaneous rotation between gantry and couch that is applied to the non-coplanar field, which had been hard to apply as a device formed of existing flat or cube.

  • PDF