• 제목/요약/키워드: irrigation supply

검색결과 331건 처리시간 0.028초

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

점적관개용 디스크 여과기의 디스크 홈 단면 형상에 따른 수두 손실 특성 분석 (Analysis of Disk Filter Head Losses due to the Shapes of Disk Grooves in Drip Irrigation System)

  • 정승연;최원;최진용;김마가;이윤희
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.25-36
    • /
    • 2018
  • Drip irrigation system is a low energy cost method which can efficiently save and supply water by dropping water slowly on the crop's root zone during crop growth. In the drip irrigation system, disk filters take an important role to physically remove impurity (inorganic and suspended organic) particles present in agricultural water which can cause emitter clogging. For the purpose, both top-and-bottom surfaces of the disk are grooved in micron size flowing from outside to inside. However, many congested flow paths in disk filter media incur higher head loss of inflow water resulting in relatively decreasing velocities depending on operation time than sand and mesh filters. Therefore, it is important to optimize the structure of disk filter in micro irrigation system. The head loss of disk filter media takes also charge of more than 60 % of total head loss in whole disk filter. This study is to find the appropriate cross-sectional shape of the disk groove to minimize the head loss by executing the experiment. The experiment used three disk filters that have similar filter body but have a half-elliptic and two kinds of triangular cross sections. The experimental results showed that the disk filter with half-elliptic cross sections of disk grooves have less head loss than the disk filter with regular triangular one.

하수의 농업적 재이용에 따른 논 담수 내 미생물 위해성 평가 (Microbial Risk Assessment in Reclaimed Wastewater Irrigation on a Paddy Field)

  • 이한필;윤춘경;정광욱;손장원
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.69-75
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhood children. Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation. It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary wastewater irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

용수절약을 위한 국내 SRI 적용 가능성 평가 (Evaluation on Feasibility of System of Rice Intensification (SRI) for Reduction of Irrigation Water in South Korea)

  • 박운지;최용훈;신민환;원철희;박기욱;최중대
    • 한국농공학회논문집
    • /
    • 제53권4호
    • /
    • pp.49-57
    • /
    • 2011
  • The objective of this study was to experimentally investigate the feasibility of SRI (system of rice intensification) in Korean rice farming. Eight experimental plots of $5{\times}15$ m in size were prepared on an existing rice field of loam soil. Spacing was $30{\times}15$ cm (conventional treatment: CT), $30{\times}30$ cm, $40{\times}40$ cm and $50{\times}50$ cm, respectively. CT were flooded and SRI plots irrigated intermittently 3 to 5 day interval during cultivation. Organic matter content and pH of the soil were $2.5{\pm}0.03$ % and $6.1{\times}0.2$, respectively, before the cultivation. The highest number of tillers and height of the plant were measured at $50{\times}50$ cm plots. The height and number of tillers and height in $50{\times}50$ cm plots were 10 cm and 1.5 times more than CT. Average irrigation supply to SRI and CT was 243.2 mm and 547.3 mm, respectively. It meant that the reduction of irrigation water in SRI plots over CT was estimated to 55.6 %. Therefore SRI was concluded to have a good enough possibility to be applied in South Korea because it was proven to be more effective in reduction of irrigation water and crop cultivation compare to the CT.

논에서 SRI 물관리 방법에 의한 온실가스와 관개용수 저감효과 분석 (Effect of SRI Water Management on the Reduction of Greenhouse-gas Emissions and Irrigation Water Supply in Paddy)

  • 서지연;박배경;박운지;이수인;최용훈;신민환;최중대
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.79-87
    • /
    • 2018
  • Water management impacts both methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from rice paddy fields. Although irrigation is one of the most important methods for reducing $CH_4$ emission in rice production systems it can also $N_2O$ emissions and reduce crop yields. A feasibility study on the system of rice intensification (SRI) methods with respect to irrigation requirements, greenhouse gas (GHG) emissions was conducted for either 2 or 3 years depending on the treatment in Korea. The SRI methods (i.e. SRI and midsummer drainage (MD) with conventional practice (CT)) reduced the irrigation requirement by 49.0 and 22.0 %, respectively. Global warming contribution of GHG to different depending on the type of GHG. Therefore, the emission of $CH_4$ and $N_2O$ shall be converted to Global Warming Potential (GWP). The GHG emission from the conventional practice with midsummer drainage (MD) and the SRI plots, in GWP were reduced by 49.1 and 77.1 %, respectively. Application of SRI water management method could help to improve Korea's water resources and could thus contribute to mitigation of the negative effects of global warming.

A study on the vulnerability of field water supply using public groundwater wells as irrigation in drought-vulnerable areas with a focus on the Dangjin-si, Yesan-gun, Cheongyang-gun, and Goesan-gun regions in South Korea

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Nam, Won-Ho;Park, Chan Gi
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.103-117
    • /
    • 2021
  • The severe effects of climate change, such as global warming and the El Niño phenomenon, have become more prevalent. In recent years, natural disasters such as drought, heavy rain, and typhoons have taken place, resulting in noticeable damage. Korea is affected by droughts that cause damage to rice fields and crops. Societal interest in droughts is growing, and measures are urgently needed to address their impacts. As the demand for high-quality agricultural products expands, farmers have become more interested in water management, and the demand for field irrigation is increasing. Therefore, we investigated water demand in the irrigation of drought-vulnerable crops. Specifically, we determined the water requirements for crops including cabbage, red pepper, apple, and bean in four regions by calculating the consumptive water use (evapotranspiration), effective rainfall, and irrigation capacity. The total consumptive water use (crop evapotranspiration) estimates for Dangjin-si (cabbage), Yesan-gun (apple), Cheongyang-gun (pepper) in Chungnam, and Goesan-gun (bean) in Chungbuk were 33.5, 206.4, 86.1, and 204.5 mm, respectively. The volumes of groundwater available in the four regions were determined to be the following: Dangjin-si, 4,968,000 m3; Yesan-gun, 4,300,000 m3; Cheongyang-gun, 1,114,000 m3, and Goesan-gun, 3,794,000 m3. The annual amounts available for the representative crops, compared to the amount of evapotranspiration, were 313.9% in Dangjin-si, 29.5% in Yesan-gun, 56.1% in Cheongyang-gun, and 20.1% in Goesan-gun.

관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증 (Development and validation of BROOK90-K for estimating irrigation return flows)

  • 박종철;김만규
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

농업용수 시험지구의 물관리 특성 조사.분석 (Study on Characteristics of Water Management in Agricultural Experimental Site.)

  • 김진택;주욱종;이종남
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.61-67
    • /
    • 2005
  • Agricultural water for rice growing is the important factor of water resources in Korea. so, it is imperative to know the practice of water management in paddy field. The experimental site has been operated in order to investigate water management practice and water supply discharge since 2001. There are 8 irrigation areas which are observed the water supply discharge in this site. We have investigate the water management practice in this site and we know that the practical date of rice growing stages and the date for calculating the water demand in paddy field. So, There is much differences between the calculated water demand and practical water supply. We could reduce the differences by calculating the water demand using the practical date of rice growing stages.

  • PDF

국내 농업용 지하댐의 현황 및 활용 사례 (Current Status and Application of Agricultural Subsurface Dams in Korea)

  • 용환호;송성호;명우호;안중기;홍순욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권3호
    • /
    • pp.18-26
    • /
    • 2017
  • The increasing frequency of droughts has been increasing the necessity of utilizing subsurface dams as reliable groundwater resources in areas where it is difficult to supply adequate agricultural water using only surface water. In this study, we analyzed the current status and actual conditions of five agricultural subsurface dams as well as the effect of obtaining additional groundwater from subsurface dams operated as one aspect of the sustainable integrated water management system. Based on the construction methods and functions of each subsurface dam, the five subsurface dams are classified into three types such as those that derive water from rivers, those that prevent seawater intrusion, and those that link to a main irrigation canal. The classification is based on various conditions including topography, reservoir location, irrigation facilities, and river and alluvial deposit distributions. Agricultural groundwater upstream of subsurface dams is obtained from four to five radial collector wells. From the study, the total amount of groundwater recovered from the subsurface dam is turned out to be about 29~44% of the total irrigation water demand, which is higher than that of general agricultural groundwater of about 4.6%.

천수답 및 수리불안전답에서외 평균수확량 추정에 관한 고찰 -수문학적 방법- (A Study on the Evaluation of the Average Yields of Rice Under Rainfed and Partially Irrigated Paddy.)

  • ;이근모
    • 한국농공학회지
    • /
    • 제17권4호
    • /
    • pp.4001-4008
    • /
    • 1975
  • The economic evaluation of the feasibility of expanding fully irrgated agriculture in the Ogseo project must consider preproject yields of rice under rainfed and partially irrigated paddy cultivation in order to assess incremental incomes from irrigation. Statistical data on yields available from official sources and field surveys conducted in the project area do not specify whether given unit yields refer to actually cropped or potentially cropped lands. This latter factor obviously affects any evaluation of marginal benefits to be derived from irrigation as the extent of rainfed areas actually cropped varies from year to year according to rain fall at the critical growth periods for low land rice. Although less dependent on direct rainfall, yields from partially irrigated lands are also highly affected by seasonal rainfalls. In this paper on attempt has been made to determine average yield under rainfed and partially irrigated conditions by relating yields to a available water. For rainfed paddy cultivation, the analysis discriminates between effects of rain deficiencies during transplanting and subsquent growth periods. For partially irrigated paddy cultivation, seasonal rainfalls have been considered, implying sufficient storage capacity for supplementary irrigation. The average yield of rainfed paddy has been calculated as 2.11 t/ha and that of partially irrigated paddy as 2.8 t/ha. Assuming even division between these two water supply patterns of areas not fully irrigated, a composite yield of 2.46 t/ha is oftained. This figure will be adopted as the basis for the on-going studies and project evaluation.

  • PDF