• Title/Summary/Keyword: irrigated water

Search Result 286, Processing Time 0.027 seconds

Water Supply Risk Assessment of Agricultural Reservoirs using Irrigation Vulnerability Model and Cluster Analysis (관개취약성 평가모형 및 군집분석을 활용한 용수공급 위험도 평가)

  • Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Because reservoirs that supply irrigation water play an important role in water resource management, it is necessary to evaluate the vulnerability of this particular water supply resource. The purpose of this study is to provide water supply risk maps of agricultural reservoirs in South Korea using irrigation vulnerability model and cluster analysis. To quantify water supply risk, irrigation vulnerability indices are estimated to evaluate the performance of the water supply on the agricultural reservoir system using a probability theory and reliability analysis. First, the irrigation vulnerability probabilities of 1,346 reservoirs managed by Korea Rural Community Corporation (KRC) were analyzed using meteorological data on 54 meteorological stations over the past 30 years (1981-2010). Second, using the K-mean method of non-hierarchical cluster analysis and pre-simulation approach, cluster analysis was applied to classify into three groups for characterizing irrigation vulnerability in reservoirs. The morphology index, watershed area, irrigated area, and ratio between watershed and irrigated area are selected as the clustering analysis parameters. It is suggested that the water supply risk map be utilized as a basis for the establishment of risk management measures, and could provide effective information for a reasonable decision making on drought risk mitigation.

Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index (위성영상기반 증발스트레스지수를 활용한 필지단위 논 가뭄 모니터링)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Kim, Ha-Young;Woo, Seung-Beom;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.47-57
    • /
    • 2021
  • Drought monitoring over paddy field area is an important role as the frequency and intensity of drought due to climate change increases. This study analyzed the applicability of drought monitoring on paddy crops using MODIS-based field surveys. As a satellite-based drought index using evapotranspiration for quantitative drought determination, ESI (Evaporative Stress Index), was applied and calculated through the ratio of MODIS- based actual and potential evapotranspiration. For the irrigated areas of Idong, Gosam, Geumgwang, and Madun reservoirs the availability of irrigation water supply, ponding depth, precipitation, paddy growth were investigated for the paddy field within one grid of MODIS. In addition, the percentile-based ESI drought severity was calculated to compare the growth process of paddy and changes in the drought category of ESI. The Idong area was irrigated about a week later than other reservoirs for the period of water supply, transplanting, and water drainage and the ESI drought category tended to be different. The Gosam, Geumgwang, and Madun area expressed moderate drought prior to the farming season, and indicated normal as the water was supplied. During the water drainage, the drought category intensified, indicating that the water available on land was decreasing. These results demonstrated that the MODIS-based ESI could be an effective tool for agricultural drought monitoring over paddy field area.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

2-Dimensional Moisture Migration Modeling in Drip-Irrigated Root Zone (점적관개(點滴灌漑)에서 토양수분 이동 현상에 대한 2차원 모델 개발 연구)

  • Ro, Hee-Myong;Kim, Seung-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.314-327
    • /
    • 1997
  • A 2-dimensional soil water flow model was developed to describe the migration of soil moisture in drip-irrigated root zone employing cylindrical coordinate system. Several natural phenomena were incorporated into the model such as transpiration, various types of evaporation, and ponding due to the increase in irrigation rate. Model was solved numerically by finite difference method. The model was verified in several ways leading to the conclusion that it can describe the soil moisture migration in drip-irrigated root zone fairly well. From sensitivity analysis, vertical migration of soil moisture was found to move faster than the horizontal one, which indicates the vertical location just under the dripping point are adequate for measuring points of soil moisture. The pot shape of soil moisture in irrigated zone was proved to be caused by evaporation at the soil surface. Also, it was found that the hydraulic conductivity has greatly influential to the soil moisture migration, and that the soil moisture continues to migrate vertically after irrigation stops.

  • PDF

Cocoon Yield Pattern and Analysis of Water, Soil and Leaves from Mulberry Gardens Irrigated with Polluted Water Around Bangalore, India

  • Chandrakala, M.V.;Maribashetty, V.G.;Aftab Ahamed, C.A.;Jyothi, H.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • Sericulturists in the vicinity of Bangalore city irrigate their mulberry gardens with Vrishabhavathy stream water, which is polluted with domestic and industrial wastes from the city. To investigate the effect of pollutants on silkworm crops, a detailed field survey was conducted to study the cocoon yield pattern of the crops raised on mulberry irrigated with wastewater as against irrigation by bore/open wells. The villages along the stream were grouped into five test batches at about a distance of $5{\sim}8$ km from each other. The seasonal yield data with relevant information were collected through questionnaires from 117 rearers using stream water and 35 rearers using bore/open wells, the latter serving as control group. The average yield for 100 layings was 46 to 57 kg in the control group whereas in test groups, it ranged between 34 to 51 kg in the first test group and 22 to 38 kg in the rest. The difference in yield was $9{\sim}19$ kg depending on the season between control and test batches. In summer, this difference was higher, with high co-efficient of variation in test groups ($33{\sim}52$%). Further, water, soil and leaf samples were collected from selected rearers and were analyzed for zinc, copper, iron, lead and nickel. Results indicated significantly higher contents of these metals in samples from gardens using wastewater when compared control samples. Significantly (p<0.05 & p<0.01)) higher levels of zinc ($24{\sim}122$ ppm) and iron ($208{\sim}683$ ppm) were noticed in mulberry leaves during summer followed by winter and rainy season. The significance of high content of heavy metals in mulberry leaves and cocoon yield pattern of this area in relation to the quality of irrigation water is discussed.

Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator

  • Kim, Minyoung;Kim, Seounghee;Kim, Youngjin;Choi, Yonghun;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.499-504
    • /
    • 2015
  • Decision making by farmers regarding irrigation is critical for crop production. Therefore, the precision irrigation technique is very important to improve crop quality and yield. Recently, much attention has been given to remote sensing of crop canopy temperature as a crop water-stress indicator, because it is a scientifically based and easily applicable method even at field scales. This study monitored a series of time-variant canopy temperature of cucumber under three different irrigation treatments: under-irrigation (control), optimal-irrigation, and over-irrigation. The difference between canopy temperature ($T_c$) and air temperature ($T_a$), $T_c-T_a$, was calculated as an indicator of cucumber water stress. Vapor pressure deficit (VPD) was evaluated to define water stress on the basis of the temperature difference between leaf and air. The values of $T_c-T_a$ was negatively related to VPD; further, cucumber growth in the under- and over-irrigated fields showed water stress, in contrast to that grown in the optimally irrigated field. Thus, thermal infrared measurements could be useful for evaluating crop water status and play an important role in irrigation scheduling of agricultural crops.

Studies on the Agricultural Pollutions in Gyeong Gi Area 1. Effect of Nitrogen Level and Soil Improvements on Growth and Yield of Rice in the Paddy Field Irrigated with Polluted Water of Hwangguji River (경기지방(京畿地方)의 농업공해(農業公害)에 관(關)한 조사연구(調査硏究) 제1보(第1報) 황구지천유역(黃口池川流域)의 오수류입답(汚水流入畓)에서 질소수준(窒素水準)과 토양개량제(土壤改良劑)가 수도(水稻)의 생육(生育) 및 수량(收量)에 미치는 영향)

  • Choi, Y.J.;Cho, G.D.;Park, C.G.;Park, J.K.
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.2
    • /
    • pp.116-122
    • /
    • 1982
  • Investigation on the water quality of Hwangguji River and experiment on the effects of nitrogen and soil improvements were carried out in the paddy field irrigated with polluted water of the river. The obtained results are as follows: 1) Amount of COD and $NH_4-N$ in water of the river were 54 ppm, 65 ppm, during the seeding time, and were 52 ppm, 512 ppm during the transplanting time respectively. Their concentrations were over the standard levels. It seemed that the water pollution was mainly caused by organic waste matters. 2) It seemed that the effective nitrogen level was $7{\sim}8$kg/10a in the paddy field irrigated with polluted water of the river. 3) The rice yields of potassium twice quantity application plot with N.P.K. fertilizer, the calcium application plot with N.P.K. fertilizer and the combined plot with potassium, wallarstonite, calcium and fresh straw, were increased 4, 5 and 8%, respectively, than that of the N.P.K. fertilizer standard level plot.

  • PDF

Response of Crop Water Stress Index (CWSI) and Canopy Temperature of Apple Tree to Irrigation Treatment Schemes (관개수준별 사과나무의 엽온 및 수분 스트레스 지수 변화 분석)

  • Kim, Minyoung;Choi, Yonghun;Cho, Junggun;Yun, Seokkyu;Park, Jeonghun;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.23-31
    • /
    • 2019
  • Crop response to weather and internal water pressure changes is more sensitive to crop water stress than soil water content. Recently, its implementation to optimal irrigation scheduling has been receiving much attention. This study was conducted to determine and compare the theoretical crop water stress index (CWSI) using meterological data and canopy temperature collected from three different irrigation treatments, which were Tr-1 plot (rainfed), Tr-2 plot (50% of daily evapotranspiration (ET) irrigated) and Tr-3 plot (75% of daily evapotranspiration (ET) irrigated). The readings of canopy temperature and CWSI were significantly different among irrigation treatment schemes. The average canopy temperatures and CWSIs of Tr-1 and Tr-3 plots were $34.6^{\circ}C$ and $32.6^{\circ}C$, 0.79 and 0.64, respectively. Solar radiation had the biggest correlation with CWSI (R=0.68) which was followed by wind speed, relative humidity and air temperature. Overall, the findings of this study indicated that canopy temperatures and CWSIs could be further used for irrigation scheduling for crop growth.

Growth and Root Characteristics and P, K Uptake by Soybean under Different Soil Water Conditions (토양(土壤) 수분(水分)의 상태(狀態)가 대두(大豆)의 생육(生育) 및 근계발달(根系發達) 특성(特性)과 P, K 흡수(吸收)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik;Ha, Sang-Geun;Han, Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.8-15
    • /
    • 1992
  • An experiment was conducted to find out effect of soil water condition on shoot and root growth and P, K uptake by soybean plants. Soybean plants were grown under different soil water table levels, 20cm, 40cm and 60cm below the soil surface using minirhizotron with 20cm in diameter, and well irrigated and water stressed conditions using 1/2000a Waganer pots. Three soybean plants, Paldal culfivar, were grown and sampled at the early growing period, 37 days after planting, and at the harvesing period, 115 days after planting. Shoot and root growth were restricted by water stresed condition and by excessive soil water condition with the 20cm water table. Little difference in shoot and root growth were found between well irrigated condition and 40cm or 60cm water table conditions. The P and K contents in shoot under water stressed condition were higher than well irrigated condition at the early growing period but reversed at later harvesting period. The dry weight and length of roots were more severely restricted by water stress than those of shoots. Root morphological difference was found by anatomical observation. Normal cortex was developed under the well irrigated condition, while abnormal cortex with aerenchyma formed by lysis under excessive water conditions of 20 or 40cm water talbes. Aerenchyma was formed at outer skirt of pericycle. Role of formation of aerenchyma of soybean roots might be an adaptation to excessive soil water condition and possibly related to survival of soybean roots growing under near flooding condition on dikes of paddy lands.

  • PDF

Water and Nutrient Balance of Paddy Field Irrigated from a Pumping Station during Cropping Period (양수장 지구 광역논으로부터 영농기간 영양물질의 유출 및 물질수지)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Cho, Jae-Young;Choi, Chang-Hyun;Son, Jae-Gwon;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.15-25
    • /
    • 2002
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer, When the runoff Bosses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 14.5 % to 17 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1% to 10.8% for nitrogen and 0.5% for phosphorus, respectively.