• 제목/요약/키워드: irradiation strategy

검색결과 50건 처리시간 0.029초

건물에서 태양 프로파일의 변화 특성을 고려한 블라인드 최적 제어 방안 (Optimum Blind Control Considering Characteristics of Solar Profile Angle Curve)

  • 성윤복
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.111-124
    • /
    • 2011
  • The objective of this study is to develop the blind control strategy and method which reduce negative effect of incoming daylight on visual comfort of occupants, minimize psychological anxieties caused by frequent motions of a blind, and maximize positive effect of incoming daylight by opening/closing of a blind. In previous researches on blind controls, major problem is that the time interval and amount of blind movement do not meet the control objective at the inflected zone of solar profile curve. To overcome these limitations revealed in theprevious researches, following tasks were performed in this study. i)To establish the control objective to accomplish the goal of this study. ii)To develop the control methods and algorithms which prevent glare on the work-plane at any time and which control the time interval and amount of blind movement to follow the control objective at various solar profile angle curves. This study proposed the control strategy and method that define the base control section implying the inflection point within the control objective zone and subsequently, divide the control sections for the residual time zones. The proposed strategy and method are found to increase the incoming daylight and solar irradiation by 0 to 15 %.

Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review

  • Kma, Lakhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2405-2425
    • /
    • 2014
  • Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.

Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide

  • Yun, Kum-Hee;Seo, Sun-Hwa;Kim, Bo-Mi;Joe, Ara;Han, Hyo-Won;Kim, Jong-Young;Jang, Eue-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2795-2799
    • /
    • 2013
  • Irradiation of gold nanorods (GNRs) with laser light corresponding to the longitudinal surface plasmon oscillation results in rapid conversion of electromagnetic energy into heat, a phenomenon commonly known as the photothermal effect of GNRs. Herein, we propose a facile strategy for increasing the photothermal conversion efficiency of GNRs by integration to form graphene oxide (GO) nanocomposites. Moreover, conjugation of iron oxide (IO) with the GO-GNR nanohybrid allowed magnetic enrichment at a specific target site and the separated GO-IO-GNR assembly was rapidly heated by laser irradiation. The present GO-IO-GNR nanocomposites hold great promise for application in various biomedical fields, including surface enhanced Raman spectroscopy imaging, photoacoustic tomography imaging, magnetic resonance imaging, and photothermal cancer therapy.

Abiotic Degradation Degradation of the Herbicide Oxadiazon in Water

  • Rahman Md. Mokhlesur;Park, Jong-Woo;Park, Man;Rhee In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • 제49권4호
    • /
    • pp.157-161
    • /
    • 2006
  • The performance of abiotic degradation of oxadiazon was investigated by applying zerovalent iron(ZVI), potassium permanganate($KMnO_4$) and titanium dioxide($TiO_2$) in the contaminated water. Experimental conditions allowed the disappearance of oxadiazon in the abiotic system. The degradation of this herbicide was monitored in buffer solutions having pH 3, 5 and 7 in the presence of iron powder in which the maximum degradation rate was achieved at acidic condition(pH 3) by 2% of ZVI treatment. The oxidative degradation of oxadiazon was observed in aqueous solution by $KMnO_4$ at pH 3, 7 and 10 in which the highest disappearance rate was found at neutral pH when treated with 2% of $KMnO_4$. The catalytic degradation of oxadiazon in $TiO_2$ suspension was obtained under dark and UV irradiation conditions. UV irradiation enhanced the degradation of oxadiazon in aquatic system in the presence of $TiO_2$. Conclusively, the remediation strategy using these abiotic reagents could be applied to remove oxadiazon from the contaminated water.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)

  • Han, Sang-Yun;Lee, Sun-Young;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.740-746
    • /
    • 2005
  • In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

Selective Effects of Curcumin on CdSe/ZnS Quantum-dot-induced Phototoxicity Using UVA Irradiation in Normal Human Lymphocytes and Leukemia Cells

  • Goo, Soomin;Choi, Young Joo;Lee, Younghyun;Lee, Sunyeong;Chung, Hai Won
    • Toxicological Research
    • /
    • 제29권1호
    • /
    • pp.35-42
    • /
    • 2013
  • Quantum dots (QDs) have received considerable attention due to their potential role in photosensitization during photodynamic therapy. Although QDS are attractive nanomaterials due to their novel and unique physicochemical properties, concerns about their toxicity remain. We suggest a combination strategy, CdSe/ZnS QDs together with curcumin, a natural yellow pigment from turmeric, to reduce QD-induced cytotoxicity. The aim of this study was to explore a potentially effective cancer treatment: co-exposure of HL-60 cells and human normal lymphocytes to CdSe/ZnS QDs and curcumin. Cell viability, apoptosis, reactive oxygen species (ROS) generation, and DNA damage induced by QDs and/or curcumin with or without ultraviolet A (UVA) irradiation were evaluated in both HL-60 cells and normal lymphocytes. In HL-60 cells, cell death, apoptosis, ROS generation, and single/double DNA strand breaks induced by QDs were enhanced by treatment with curcumin and UVA irradiation. The protective effects of curcumin on cell viability, apoptosis, and ROS generation were observed in normal lymphocytes, but not leukemia cells. These results demonstrated that treatment with QD combined with curcumin increased cell death in HL-60 cells, which was mediated by ROS generation. However, curcumin acted as an antioxidant in cultured human normal lymphocytes.

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

작업면 현휘 방지와 주광 및 일사 유입 최대화를 위한 제어 종료 영역에서의 최적 블라인드 제어 (Optimum Blind Control at the End of Operation Time Zone for Preventing Glare on Work-plane and Maximizing Daylight and Solar Heat Gain)

  • 성윤복;여명석;구소영;김광우
    • 한국주거학회논문집
    • /
    • 제23권1호
    • /
    • pp.27-41
    • /
    • 2012
  • The objective of this study is to develop the blind control strategy and method which reduce negative effect of incoming daylight on visual comfort of occupants, minimize psychological anxieties caused by frequent motions of a blind, and maximize positive effect of incoming daylight and solar irradiation by opening/closing of a blind. As previous researches on blind controls have limited outdoor environmental conditions to those in specific regions, orientations and dates, these resulted in problems at various conditions for general-purpose application. Major problem is that the time interval and amount of blind movement do not meet the control objective at the end of control zone and discontinuous curve. To overcome these limitations revealed in the previous researches, following tasks were performed in this study. 1) To establish the control objective to accomplish the goal of this study. 2) To develop the control methods and algorithms which prevent glare on the work-plane at any time and which control the time interval and amount of blind movement to follow the control objective at various profile angle curves. 3) To validate the general-purpose applicability and performance of the developed control methods and algorithms by simulation and its data analysis at various conditions. It was found that the proposed methods and algorithms can prevent the direct glare on the work-plane at all the time and also increase the incoming daylight and solar irradiation.