DOI QR코드

DOI QR Code

Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review

  • Kma, Lakhan (Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University)
  • Published : 2014.03.30

Abstract

Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.

Keywords

References

  1. Adil MD, Kaiser P, Satti NK, et al (2010). Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J Ethnopharmacol, 132, 109-4. https://doi.org/10.1016/j.jep.2010.07.047
  2. Agrawala PK, Adhikari JS (2009). Modulation of radiationinduced cytotoxicity in U 87 cells by RH-3 (a preparation of Hippophae rhamnoides). Indian J Med Res, 130, 542-9.
  3. Agrawala PK, Goel HC (2002). Protective effect of RH-3 with special reference to radiation induced micronuclei in mouse bone marrow. Indian J Exp Biol, 40, 525-0.
  4. Akinboro A, Mohmed KB, Asmawi MZ, Sulaiman SF, Sofiman OA (2011). Antioxidants in aqueous extract of Myristica fragrans (Houtt.) suppress mitosis and cyclophosphamideinduced chromosomal aberrations in Allium cepa L cells. J Zhejiang Univ Sci B, 12, 915-2. https://doi.org/10.1631/jzus.B1000315
  5. Alok A, Adhikari JS, Chaudhury NK (2013). Radioprotective role of clinical drug diclofenac sodium. Mutat Res, 755, 156-2. https://doi.org/10.1016/j.mrgentox.2013.06.015
  6. Alves JG, de Brito Rde C, Cavalcanti TS (2012). Effectiveness of Mentha piperita in the treatment of infantile colic: a crossover study. Evid Based Complement Alternat Med, 2012, 981352-7.
  7. Anand P, Thomas SG, Kunnumakkara AB, et al (2008). Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol, 76, 1590-11. https://doi.org/10.1016/j.bcp.2008.08.008
  8. Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D, Herman TS (2008). Curcumin inhibits NF-kappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Ther, 7, 569-6.
  9. Arora R, Chawla R, Dhaker AS, et al (2010). Podophyllum hexandrum as a potential botanical supplement for the medical management of nuclear and radiological emergencies (NREs) and free radical-mediated ailments: leads from In vitro/in vivo radioprotective efficacy evaluation. J Diet Suppl, 7, 31-50. https://doi.org/10.3109/19390210903534996
  10. Arora R, Chawla R, Puri SC, et al (2005). Radioprotective and antioxidant properties of low-altitude Podophyllum hexandrum (LAPH). J Environ Pathol Toxicol Oncol, 24, 299-14. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v24.i4.70
  11. Arora R, Gupta D, Chawla R, et al (2005). Radioprotection by plant products: present status and future prospects. Phytother Res, 19, 1-22. https://doi.org/10.1002/ptr.1605
  12. Baliga MS, Bhat HP, PereiramM, Mathias N, Venkatesh P (2010). Radioprotective effects of Aegle marmelos (L.) Correa (Bael): a concise review. J Altern Complement Med, 16, 1109-6. https://doi.org/10.1089/acm.2009.0604
  13. Baliga MS, Dsouza JJ (2011). Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev, 20, 225-39. https://doi.org/10.1097/CEJ.0b013e32834473f4
  14. Barg M, Rezin GT, Leffa DD, et al (2013). Evaluation of the protective effect of Ilex paraguariensis and CamelliA. sinensis extracts on the prevention of oxidative damage caused by ultraviolet radiation. Environ Toxicol Pharmacol, 37, 195-1.
  15. Bergman Jungestrom M, Thompson LU, Dabrosin C (2007). Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res, 13, 1061-7. https://doi.org/10.1158/1078-0432.CCR-06-1651
  16. Bing SJ, Kim MJ, Ahn G, et al (2013). Acidic polysaccharide of Panax ginseng regulates the mitochondria/caspasedependent apoptotic pathway in radiation-induced damage to the jejunum in mice. Acta Histochem, [Epub ahead of print].
  17. Biswas SJ, Bhattacharjee N, Khuda-Bukhsh AR (2008). Efficacy of a plant extract (Chelidonium majus L.) in combating induced hepatocarcinogenesis in mice. Food Chem Toxicol, 46, 1474-87. https://doi.org/10.1016/j.fct.2007.12.009
  18. Bouvard V, Zaitchouk T, Vacher M, et al (2000). Tissue and cellspecific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene, 19, 649-60. https://doi.org/10.1038/sj.onc.1203366
  19. Brand RM, Jendrzejewski JL (2008). Topical treatment with -epigallocatechin-3-gallate and genistein after a single UV exposure can reduce skin damage. J Dermatol Sci, 50, 69-2. https://doi.org/10.1016/j.jdermsci.2007.11.008
  20. Brown AP, Chung EJ, Urick ME, et al (2010). Evaluation of the fullerene compound DF-1 as a radiation protector. Radiat Oncol, 5, 34-46. https://doi.org/10.1186/1748-717X-5-34
  21. Cahlikova L, Opletal L, Kurfurst M, et al (2010). Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae). Nat Prod Commun, 5, 1751-4.
  22. Cai HB, Luo RC (2003). Prevention and therapy of radiation induced pulmonary injury with traditional Chinese medicine. Di Yi Jun Yi Da Xue Xue Bao, 23, 958-0.
  23. Calveley VL, Jelveh S, Langan A, et al (2010). Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res, 173, 602-1. https://doi.org/10.1667/RR1896.1
  24. Cao W, Li XQ, Wang X, et al (2010a). Characterizations and anti-tumor activities of three acidic polysaccharides from AngelicA. sinensis (Oliv.) Diels. Int J Biol Macromol, 46, 115-2. https://doi.org/10.1016/j.ijbiomac.2009.11.005
  25. Cao W, Li XQ, Wang X, et al (2010b). A novel polysaccharide, isolated from AngelicA. sinensis (Oliv.) Diels induces the apoptosis of cervical cancer hela cells through an intrinsic apoptotic pathway. Phytomedicine, 17, 598-5. https://doi.org/10.1016/j.phymed.2009.12.014
  26. Chawla R, Arora R, Kumar R, et al (2005). Antioxidant activity of fractionated extracts of rhizomes of high-altitude Podophyllum hexandrum: role in radiation protection. Mol Cell Biochem, 273, 193-08. https://doi.org/10.1007/s11010-005-0821-5
  27. Chawla R, Arora R, Sagar RK, et al (2005). 3-O-beta-DGalactopyranoside of quercetin as an active principle from high altitude Podophyllum hexandrum and evaluation of its radioprotective properties. Z Naturforsch C, 60, 728-8.
  28. Chawla R, Arora R, Singh S, et al (2006). Podophyllum hexandrum offers radioprotection by modulating free radical flux: role of aryl-tetralin lignans. Evid Based Complement Alternat Med, 3, 503-1. https://doi.org/10.1093/ecam/nel037
  29. Checker R, Chatterjee S, Sharma D, et al (2008). Immunomodulatory and radioprotective effects of lignans derived from fresh nutmeg mace (Myristica fragrans) in mammalian splenocytes. Int Immunopharmacol, 8, 661-9. https://doi.org/10.1016/j.intimp.2008.01.012
  30. Chen B, Zhou X, Taghizadeh K, et al (2007). GC/MS methods to quantify the 2-deoxypentos-4-ulose and 3'-phosphoglycolate pathways of 4' oxidation of 2-deoxyribose in DNA: application to DNA damage produced by gamma radiation and bleomycin. Chem Res Toxicol, 20, 1701-8. https://doi.org/10.1021/tx700164y
  31. Chen J, Saggar JK, Corey P, Thompson LU (2009). Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr, 139, 2061-6. https://doi.org/10.3945/jn.109.112508
  32. Chen Y, Duan JA, Qian D, et al (2010). Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of AngelicA. sinensis in vitro on the peritoneal macrophages in ICR mice. Int Immunopharmacol, 10, 422-0. https://doi.org/10.1016/j.intimp.2010.01.004
  33. Chen Y, Okunieff P (2004). Radiation and third-generation chemotherapy. Hematol Oncol Clin North Am, 18, 55-80. https://doi.org/10.1016/S0889-8588(03)00145-X
  34. Cheng J, Kondo K, Suzuki Y, et al (2003). Inhibitory effects of total flavones of Hippophae rhamnoides L. on thrombosis in mouse femoral artery and in vitro platelet aggregation. Life Sci, 72, 2263-1. https://doi.org/10.1016/S0024-3205(03)00114-0
  35. Chirathaworn C, Kongcharoensuntorn W, Dechdoungchan T, et al (2007). Myristica fragrans Houtt. methanolic extract induces apoptosis in a human leukemia cell line through SIRT1 mRNA downregulation. J Med Assoc Thai, 90, 2422-8.
  36. Cho YJ, Yi CO, Jeon BT, et al (2013). Curcumin attenuates radiation-induced inflammation and fibrosis in rat lungs. Korean J Physiol Pharmacol, 17, 267-4. https://doi.org/10.4196/kjpp.2013.17.4.267
  37. Choudhary GP (2009). Diuretic activity of the leaves of Coleus aromaticus Benth. Anc Sci Life, 29, 20-1.
  38. Christofidou-Solomidou M, Tyagi S, Pietrofesa R, et al (2012). Radioprotective role in lung of the flaxseed lignan complex enriched in the phenolic secoisolariciresinol diglucoside (SDG). Radiat Res, 178, 568-80. https://doi.org/10.1667/RR2980.1
  39. Christofidou-Solomidou M, Tyagi S, Tan KS, et al (2011). Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice. BMC Cancer, 11, 269-83. https://doi.org/10.1186/1471-2407-11-269
  40. Citrin D, Cotrim AP, Hyodo F, et al (2010). Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist, 15, 360-71. https://doi.org/10.1634/theoncologist.2009-S104
  41. Claro S, Kanashiro CA, Oshiro ME, Ferreira AT, Khalil RA (2007). Alpha-and epsilon-protein kinase C activity during smooth muscle cell apoptosis in response to gammaradiation. J Pharmacol Exp Ther, 322, 964-2. https://doi.org/10.1124/jpet.107.125930
  42. Copp RR, Peebles DD, Soref CM, Fahl WE (2013). Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol, 89, 485-2. https://doi.org/10.3109/09553002.2013.770579
  43. Cordes N, Plasswilm L, Bamberg M, Rodemann HP (2002). Ukrain, an alkaloid thiophosphoric acid derivative of Chelidonium majus L. protects human fibroblasts but not human tumour cells in vitro against ionizing radiation. Int J Radiat Biol, 78, 17-7. https://doi.org/10.1080/09553000110089991
  44. CrMErs P, Verhoeven EE, Filon AR, et al (2011). Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells. Radiat Res, 175, 432-43. https://doi.org/10.1667/RR1972.1
  45. Davis TA, Clarke TK, Mog SR, Landauer MR (2007). Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival. Int J Radiat Biol, 83, 141-1. https://doi.org/10.1080/09553000601132642
  46. Davis TA, Mungunsukh O, Zins S, Day RM, Landauer MR (2008). Genistein induces radioprotection by hematopoietic stem cell quiescence. Int J Radiat Biol, 84, 713-26. https://doi.org/10.1080/09553000802317778
  47. Day RM, Davis TA, Barshishat-Kupper M, et al (2013). Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int Immunopharmacol, 15, 348-6. https://doi.org/10.1016/j.intimp.2012.12.029
  48. Day RM, Barshishat-Kupper M, Mog SR, et al (2008). Genistein protects against biomarkers of delayed lung sequelae in mice surviving high-dose total body irradiation. J Radiat Res, 49, 361-72. https://doi.org/10.1269/jrr.07121
  49. Ding NH, Li JJ, Sun LQ (2013). Molecular mechanisms and treatment of radiation-induced lung fibrosis. Curr Drug Targets, 14, 1347-6. https://doi.org/10.2174/13894501113149990198
  50. Dupasquier CM, Dibrov E, Kneesh AL, et al (2007). Dietary flaxseed inhibits atherosclerosis in the LDL receptordeficient mouse in part through antiproliferative and antiinflammatory actions. Am J Physiol Heart Circ Physiol, 293, 2394-2. https://doi.org/10.1152/ajpheart.01104.2006
  51. Dutta A, Verma S, Sankhwar S, Flora SJ, Gupta ML (2012). Bioavailability, antioxidant and non toxic properties of a radioprotective formulation prepared from isolated compounds of Podophyllum hexandrum: a study in mouse model. Cell Mol Biol, 58, 1646-3.
  52. Eklund PC, Langvik OK, Warna JP, et al (2005). Chemical studies on antioxidant mechanism and free radical scavenging properties of Lignans. Org Biomol Chem, 3, 3336-47. https://doi.org/10.1039/b506739a
  53. Flechsig P, Hartenstein B, Teurich S, et al (2010). Loss of matrix metalloproteinase-13 attenuates murine radiation-induced pulmonary fibrosis. Int J Radiat Oncol Biol Phys, 77, 582-0. https://doi.org/10.1016/j.ijrobp.2009.12.043
  54. Fleckenstein K, Gauter-Fleckenstein B, Jackson IL, et al (2007). Using biological markers to predict risk of radiation injury. Semin Radiat Oncol, 17, 89-8. https://doi.org/10.1016/j.semradonc.2006.11.004
  55. Fliedner TM, Dorr DH, Meineke V (2005). Multi-organ involvement as a pathogenetic principle of the radiation syndromes: a study involving 110 case histories documented in SEARCH and classified as the bases of haematopoietic indicators of effect. Br J Radiol Suppl, 27, 1-8.
  56. Francois S, Mouiseddine M, Allenet-Lepage B, et al (2013). Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. Biomed Res Int, 2013, 151679-97.
  57. Fu Y, Wang Y, Du L, et al (2013). Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. Int J Mol Sci, 14, 14105-18. https://doi.org/10.3390/ijms140714105
  58. Gagliano N, Moscheni C, Torri C, et al (2007). Ukrain modulates glial fibrillary acidic protein, but not connexin 43 expression, and induces apoptosis in human cultured glioblastoma cells. Anticancer Drugs, 18, 669-6. https://doi.org/10.1097/CAD.0b013e32808bf9ec
  59. Gandhi NM, Nair CK (2004). Radiation protection by diethyldithiocarbamate: protection of membrane and DNA in vitro and in vivo against gamma-radiation. J Radiat Res, 45, 175-0. https://doi.org/10.1269/jrr.45.175
  60. Gao F, Fish BL, Szabo A, et al (2012). Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res, 178, 468-80. https://doi.org/10.1667/RR2953.2
  61. Gilca M, Gaman L, Stoian EPI, Atanasiu V (2010). Chelidonium majus-an integrative review: traditional knowledge versus modern findings. Forsch Komplementmed, 17, 241-8. https://doi.org/10.1159/000321397
  62. Goel HC, Indraghanti P, Samanta N, Ranaz SV (2004). Induction of apoptosis in thymocytes by Hippophae rhamnoides: implications in radioprotection. J Environ Pathol Toxicol Oncol, 23, 123-37. https://doi.org/10.1615/JEnvPathToxOncol.v23.i2.50
  63. Goel HC, Kumar IP, Samanta N, Rana SV (2003). Induction of DNA-protein cross-links by Hippophae rhamnoides: implications in radioprotectionand cytotoxicity. Mol Cell Biochem, 245, 57-7. https://doi.org/10.1023/A:1022809625826
  64. Goel HC, Prakash H, Ali A, Bala M (2007). Podophyllum hexandrum modulates gamma radiation-induced immunosuppression in Balb/c mice: implications in radioprotection. Mol Cell Biochem, 295, 93-3. https://doi.org/10.1007/s11010-006-9277-5
  65. Goel HC, Prasad J, Singh S, et al (2002). Radioprotection by a herbal preparation of Hippophae rhamnoides, RH-3, against whole body lethal irradiation in mice. Phytomedicine, 9, 15-5. https://doi.org/10.1078/0944-7113-00077
  66. Goel HC, Salin CA, Prakash H (2003). Protection of jejunal crypts by RH-3 (a preparation of Hippophae rhamnoides) against lethal whole body gamma irradiation. Phytother Res, 17, 222-6. https://doi.org/10.1002/ptr.1109
  67. Gorshkova I, Zhou T, Mathew B, et al (2012). Inhibition of serine palmitoyltransferase delays the onset of radiationinduced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. J Lipid Res, 53, 1553-68. https://doi.org/10.1194/jlr.M026039
  68. Gottfredsen RH, Goldstrohm DA, Hartney JM, et al (2014). The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the natural occurring R213G substitution. Free Radic Biol Med, Feb 7, [Epub ahead of print].
  69. Grigoleit HG, Grigoleit P (2005). Pharmacology and preclinical pharmacokinetics of peppermint oil. Phytomedicine, 12, 612-6. https://doi.org/10.1016/j.phymed.2004.10.007
  70. Grinevich Y, Shalimov S, Bendyuh G, Zahriychuk O, Hodysh Y (2005). Effect of Ukrain on the growth and metastasizing of Lewis carcinoma in C57BL/6 mice. Drugs Exp Clin Res, 31, 59-70.
  71. Gullett NP, Ruhul Amin AR, Bayraktar S, et al (2010). Cancer prevention with natural compounds. Semin Oncol, 37, 258-81. https://doi.org/10.1053/j.seminoncol.2010.06.014
  72. Gupta D, Arora R, Garg AP, Bala M, Goel HC (2004). Modification of radiation damage to mitochondrial system in vivo by Podophyllum hexandrum: mechanistic aspects. Mol Cell Biochem, 266, 65-77. https://doi.org/10.1023/B:MCBI.0000049139.05337.40
  73. Gupta ML, Sankhwar S, Verma S, et al (2008). Whole body protection to lethally irradiated mice by oral administration of semipurified fraction of podophyllum hexandrum and post irradiation treatment of Picrorhiza kurroa. Tokai J Exp Clin Med, 33, 6-12.
  74. Gupta ML, Tyagi S, Flora SJ, et al (2007). Protective efficacy of semi purified fraction of high altitude Podophyllum hexandrum rhizomes in lethally irradiated Swiss albino mice. Cell Mol Biol, 53, 29-41.
  75. Ha CT, Li XH, Fu D, Xiao M, Landauer MR (2013). Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation. Radiat Res, 180, 316-5. https://doi.org/10.1667/RR3326.1
  76. Habermehl D, Kammerer B, Handrick R, et al (2006). Proapoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway. BMC Cancer, 6, 14-35. https://doi.org/10.1186/1471-2407-6-14
  77. Han G, Zhou YF, Zhang MS, et al (2006). AngelicA. sinensis down-regulates hydroxyproline and TGF-$\beta$1 and provides protection in mice with radiation-induced pulmonary fibrosis. Radiat Res, 165, 546-2. https://doi.org/10.1667/RR3543.1
  78. Han Y, Son SJ, Akhalaia M, et al (2005). Modulation of radiationinduced disturbances of antioxidant defense systems by ginsan. Evid Based Complement Alternat Med, 2, 529-6. https://doi.org/10.1093/ecam/neh123
  79. Han Y, Wang Y, Xu HT, et al (2009). X-radiation induces nonsmall- cell lung cancer apoptosis by upregulation of axin expression. Int J Radiat Oncol Biol Phys, 75, 518-6. https://doi.org/10.1016/j.ijrobp.2009.05.040
  80. Hari Kumar KB, Sabu MC, Lima PS, Kuttan R (2004). Modulation of haematopoetic system and antioxidant enzymes by Emblica officinalis gaertn and its protective role against gamma-radiation induced damages in mice. J Radiat Res, 45, 549-5. https://doi.org/10.1269/jrr.45.549
  81. Hassan HA, Hafez HS, Goda MS (2013). Mentha piperita as a pivotal neuro-protective agent against gamma irradiation induced DNA fragmentation and apoptosis : mentha extract as a neuroprotective against gamma irradiation. Cytotechnology, 65, 145-56. https://doi.org/10.1007/s10616-012-9470-1
  82. Haston CK, Begin M, Dorion G, Cory SM (2007). Distinct loci influence radiation-induced alveolitis from fibrosing alveolitis in the mouse. Cancer Res, 67, 10796-3. https://doi.org/10.1158/0008-5472.CAN-07-2733
  83. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008). Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci, 65, 1631-52. https://doi.org/10.1007/s00018-008-7452-4
  84. Hei TK, Zhao Y, Zhou H, Ivanov V (2011). Mechanism of radiation carcinogenesis: role of the TGFBI gene and the inflammatory signaling cascade. Adv Exp Med Biol, 720, 163-0. https://doi.org/10.1007/978-1-4614-0254-1_13
  85. Hill RP, Zaidi A, Mahmood J, Jelveh S (2011). Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol, 101, 73-9. https://doi.org/10.1016/j.radonc.2011.06.017
  86. Horton JA, Hudak KE, Chung EJ, et al (2013). Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells, 31, 2231-1. https://doi.org/10.1002/stem.1483
  87. Hussain A, Shadma W, Maksood A, Ansari SH (2013). Protective effects of Picrorhiza kurroa on cyclophosphamide-induced immunosuppression in mice. Pharmacognosy Res, 5, 30-5.
  88. Jagetia GC (2007). Radioprotection and radiosensitization by curcumin. Review. Adv Exp Med Biol, 595, 301-20. https://doi.org/10.1007/978-0-387-46401-5_13
  89. Jagetia GC (2007). Radioprotective potential of plants and herbs against the effects of ionizing radiation. J Clin Biochem Nutr, 40, 74-1. https://doi.org/10.3164/jcbn.40.74
  90. Jagetia GC, Venkatesh P (2005). Radioprotection by oral administration of Aegle marmelos (L.) correa in vivo. J Environ Pathol Toxicol Oncol, 24, 315-32. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v24.i4.80
  91. Jagetia GC, Venkatesh P, Archana P, Krishnanand BR, Baliga MS (2006). Effects of Aegle marmelos (L.) Correa on the peripheral blood and small intestine of mice exposed to gamma radiation. J Environ Pathol Toxicol Oncol, 25, 611-24. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i4.10
  92. Jagetia GC, Venkatesh P, Baliga MS (2003). Evaluation of the radioprotective effect of Aegle marmelos (L.) correa in cultured human peripheral blood lymphocytes exposed to different doses of $\gamma$-radiation: a micronucleus study. Mutagenesis, 18, 387-3. https://doi.org/10.1093/mutage/geg011
  93. Jagetia GC, Venkatesh P, Baliga MS (2004a). Evaluation of the radioprotective effect of bael leaf (Aegle marmelos) extract in mice. Int J Radiat Biol, 80, 281-0. https://doi.org/10.1080/09553000410001679776
  94. Jagetia GC, Venkatesh P, Baliga MS (2004b). Fruit extract of Aegle marmelos protects mice against radiation-induced lethality. Integr Cancer Ther, 3, 323-2. https://doi.org/10.1177/1534735404270641
  95. Janko M, Ontiveros F, Fitzgerald TJ, et al (2012). IL-1 generated subsequent to radiation-induced tissue injury contributes to the pathogenesis of radiodermatitis. Radiat Res, 178, 166-2. https://doi.org/10.1667/RR3097.1
  96. Jelveh S, Kaspler P, Bhogal N, e al (2013). Investigations of antioxidant-mediated protection and mitigation of radiationinduced DNA damage and lipid peroxidation in murine skin. Int J Radiat Biol, 89, 618-7. https://doi.org/10.3109/09553002.2013.782450
  97. Jiang F, Dusting GJ (2003). Natural phenolic compounds as cardiovascular therapeutics: potential role of their antiinflammatory effects. Review. Curr Vasc Pharmacol, 1, 135-56. https://doi.org/10.2174/1570161033476736
  98. Jiang YJ, Teichert AE, Fong F, Oda Y, Bikle DD (2013). 1$\alpha$,25(OH)2-dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the $\beta$-catenin pathway. J Steroid Biochem Mol Biol, 136, 229-2. https://doi.org/10.1016/j.jsbmb.2012.09.024
  99. Jindal A, Soyal D, Sharma A, Goyal PK (2009). Protective effect of an extract of Emblica officinalis against radiation-induced damage in mice. Integr Cancer Ther, 8, 98-5. https://doi.org/10.1177/1534735409331455
  100. Kapoor S (2013). Ukrain and its emerging role as an antineoplastic agent in systemic malignancies. Exp Oncol, 35, 127-2.
  101. Kasem RF, Hegazy RH, Arafa MA, Abdelmohsenm M (2014). Chemopreventive effect of Mentha piperita on dimethylbenz[a]anthracene and formaldehydeinduced tongue carcinogenesis in mice (histological and immunohistochemical study). J Oral Pathol Med, [Epub ahead of print].
  102. Kim HJ, Kim MH, Byon YY, et al (2007). Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci, 8, 39-4. https://doi.org/10.4142/jvs.2007.8.1.39
  103. Kim SH, Lee SE, Oh H, et al (2002). The radioprotective effects of buzhong-yi-qi-tang: a prescription of traditional Chinese medicine. Am J Chin Med, 30, 127-7. https://doi.org/10.1142/S0192415X02000144
  104. Kinniry P, Amrani Y, Vachani A, et al (2006). Dietary flaxseed supplementation ameliorates inflammation and oxidative tissue damage in experimental models of acute lung injury in mice. J Nutr, 136, 1545-1.
  105. Kitagawa S, Inoue K, Teraoka R, Morita SY (2010). Enhanced skin delivery of genistein and other two isoflavones by microemulsion and prevention against UV irradiationinduced erythema formation. Chem Pharm Bull, 58, 398-1. https://doi.org/10.1248/cpb.58.398
  106. Kma L, Gao F, Fish BL, et al (2012). Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. J Radiat Res, 53, 10-7. https://doi.org/10.1269/jrr.11035
  107. Kong FM, Ten Haken R, Eisbruch A, Lawrence TS (2005). Non-small cell lung cancer therapy-related pulmonary toxicity: an update on radiation pneumonitis and fibrosis. Semin Oncol, 32, S42-4.
  108. Koriem KM, Arbid MS, Asaad GF (2013). Chelidonium majus leaves methanol extract and its chelidonine alkaloid ingredient reduce cadmium-induced nephrotoxicity in rats. J Nat Med, 67, 159-7. https://doi.org/10.1007/s11418-012-0667-6
  109. Korolenko TA, Poteryaeva ON, Djanayeva SJ, et al (2000). Cystatin C in LS lymphosarcoma and HA-1 hepatoma treated with Ukrain and cyclophosphamide and involvement of apoptosis. Drugs Exp Clin Res, 26, 285-2.
  110. Krishnaveni M, Mirunalini S (2010). Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. Review. J Basic Clin Physiol Pharmacol, 21, 93-105.
  111. Kuenzel J, Geisler K, Strahl O, et al (2013). Chelidonium majus and its effects on uterine contractility in a perfusion model. Eur J Obstet Gynecol Reprod Biol, 169, 213-7. https://doi.org/10.1016/j.ejogrb.2013.03.014
  112. Kucuktulu E (2012). Protective effect of melatonin against radiation induced nephrotoxicity in rats. Asian Pac J Cancer Prev, 13, 4101-5. https://doi.org/10.7314/APJCP.2012.13.8.4101
  113. Kulp M, Bragina O (2013). Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Anal Bioanal Chem, 405, 3391-7. https://doi.org/10.1007/s00216-013-6755-y
  114. Kulp M, Bragina O, Kogerman P, Kaljurand M (2011). Capillary electrophoresis with LED-induced native fluorescence detection for determination of isoquinoline alkaloids and their cytotoxicity in extracts of Chelidonium majus L. J Chromatogr A, 1218, 5298-4. https://doi.org/10.1016/j.chroma.2011.06.016
  115. Kumar IP, Namita S, Goel HC (2002). Modulation of chromatin organization by RH-3, a preparation of Hippophae rhamnoides, a possible role in radioprotection. Mol Cell Biochem, 238, 1-9. https://doi.org/10.1023/A:1019905211392
  116. Kumar R, Singh PK, Sharma A, et al (2005). Podophyllum hexandrum (Himalayan mayapple) extract provides radioprotection by modulating the expression of proteins associated with apoptosis. Biotechnol Appl Biochem, 42, 81-92. https://doi.org/10.1042/BA20040164
  117. Kunwar A, Narang H, Priyadarsini KI, et al (2007). Delayed activation of PKCdelta and NF-kappaB and higher radioprotection in splenic lymphocytes by copper (II)- Curcumin (1:1) complex as compared to curcumin. J Cell Biochem, 102, 1214-4. https://doi.org/10.1002/jcb.21348
  118. Lachumy SJ, Oon CE, Deivanai S, et al (2013). Herbal remedies for combating irradiation: a green anti- irradiation approach. Asian Pac J Cancer Prev, 14, 5553-65. https://doi.org/10.7314/APJCP.2013.14.10.5553
  119. Lans C (2007). Ethnomedicines used in Trinidad and Tobago for reproductive problems. J Ethnobiol Ethnomed, 15, 3-3.
  120. Lanvers-Kaminsky C, Nolting DM, Koster J, et al (2006). Invitro toxicity of Ukrain against human Ewing tumor cell lines. Anticancer Drugs, 17, 1025-0. https://doi.org/10.1097/01.cad.0000231467.61911.50
  121. Lata M, Prasad J, Singh S, et al (2009). Whole body protection against lethal ionizing radiation in mice by REC-2001: a semi-purified fraction of Podophyllum hexandrum. Phytomedicine, 16, 47-5. https://doi.org/10.1016/j.phymed.2007.04.010
  122. Lee JC, Kinniry PA, Arguiri E, et al (2010). Dietary curcumin increases antioxidant defenses in lung, ameliorates radiationinduced pulmonary fibrosis, and improves survival in mice. Radiat Res, 173, 590-01. https://doi.org/10.1667/RR1522.1
  123. Lee JC, Bhora F, Sun J, et al (2008). Dietary flaxseed enhances antioxidant defenses and is protective in a mouse model of lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol, 294, 255-5.
  124. Lee JC, Krochak R, Blouin A, et al (2009). Dietary flaxseed prevents radiation-induced oxidative lung damage, inflammation and fibrosis in a mouse model of thoracic radiation injury. Cancer Biol Ther, 8, 47-3. https://doi.org/10.4161/cbt.8.1.7092
  125. Lee JG, Hsieh WT, Chen SU, Chiang BH (2012). Hematopoietic and myeloprotective activities of an acidic AngelicA. sinensis polysaccharide on human CD34+stem cells. J Ethnopharmacol, 139, 739-5. https://doi.org/10.1016/j.jep.2011.11.049
  126. Lee YC, Kim SH, Roh SS, Choi HY, Seo YB (2007). Suppressive effects of Chelidonium majus methanol extract in knee joint, regional lymph nodes, and spleen on collagen-induced arthritis in mice. J Ethnopharmacol, 112, 40-8. https://doi.org/10.1016/j.jep.2007.01.033
  127. Li XL, Yao JY, Zhou ZM, et al (2011). Activity of the chelerythrine, a quaternary benzo[c]phenanthridine alkaloid from Chelidonium majus L. on Dactylogyrus intermedius. Parasitol Res, 109, 247-2. https://doi.org/10.1007/s00436-011-2320-9
  128. Linard C, Marquette C, Mathieu J, et al (2004). Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kB inhibitor. Int J Radiat Oncol Biol Phys, 58, 427-4. https://doi.org/10.1016/j.ijrobp.2003.09.039
  129. Lindahl G, Saarinen N, Abrahamsson A, Dabrosin C (2011). Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Res, 71, 51-0.
  130. Little JB (2000). Radiation carcinogenesis. Carcinogenesis, 21, 397-4. https://doi.org/10.1093/carcin/21.3.397
  131. Liu C, Li J, Meng FY, et al (2010). Polysaccharides from the root of AngelicA. sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway. BMC Complement Altern Med, 10, 79-93. https://doi.org/10.1186/1472-6882-10-79
  132. Liu LN, Guo ZW, Zhang Y, Qin H, Han Y (2012). Polysaccharide extracted from Rheum tanguticum prevents irradiationinduced immune damage in mice.. Asian Pac J Cancer Prev, 13, 4101-5. https://doi.org/10.7314/APJCP.2012.13.8.4101
  133. Luksa-Lichtenthaeler GL, Ladutko EI, Nowicky JW (2000). Radiomodification effects of Ukrain, a cytostatic and immunomodulating drug, on intracellular glucocorticoid reception during short-term gamma-irradiation. Drugs Exp Clin Res, 26, 311-5.
  134. Machtay M, Scherpereel A, Santiago J, et al (2006). Systemic polyethylene glycol-modified (PE Gylated) superoxide dismutase and catalase mixture attenuates radiation pulmonary fibrosis in the C57/bl6 mouse. Radiother Oncol, 81, 196-5. https://doi.org/10.1016/j.radonc.2006.09.013
  135. Madan B, Ghosh B (2003). Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock, 19, 91-6.
  136. McCurdy M, Bergsma DP, Hyun E, et al (2013). The role of lung lobes in radiation pneumonitis and radiation-induced inflammation in the lung: a retrospective study. J Radiat Oncol, 2, 203-8. https://doi.org/10.1007/s13566-012-0079-y
  137. McFarland HI, Puig M, Grajkowska LT, et al (2012). Regulatory T cells in $\gamma$-irradiation-induced immune suppression. PLoS One, 7, 39092-2. https://doi.org/10.1371/journal.pone.0039092
  138. Mehta V (2005). Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys, 63, 5-24. https://doi.org/10.1016/j.ijrobp.2005.03.047
  139. Mikhailenko VM, Diomina EA, Muzalov II, Gerashchenko BI (2013). Nitric oxide coordinates development of genomic instability in realization of combined effect with ionizing radiation. Exp Oncol, 35, 58-4.
  140. Mitra SK, Kannan R, Sundaram R (2007). Pharmacognostical and physicochemical characteristics of roots of lesser known medicinal plant Caesalpinia digyna rottl. Anc Sci Life, 26, 35-9.
  141. Monceau V, Meziani L, Strup-Perrot C, et al (2013). Enhanced sensitivity to low dose irradiation of ApoE-/- mice mediated by early pro-inflammatory profile and delayed activation of the TGF$\beta$1 cascade involved in fibrogenesis. PLoS One, 8, 57052-66. https://doi.org/10.1371/journal.pone.0057052
  142. Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME (2013). Angiotensin-(1-7) prevents radiationinduced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med, 65, 1060-8. https://doi.org/10.1016/j.freeradbiomed.2013.08.183
  143. Morita T, Jinno K, Kawagishi H, et al (2003). Hepatoprotective effect of Myristicin from Nutmeg (Myristica fragrans) on lipopolysaccharide/D-galactosamine-induced liver injury. J Agric Food Chem, 51, 15605.
  144. Mukherjee D, Coates PJ, Lorimore SA, Wright EG (2012). The in vivo expression of radiation-induced chromosomal instability has an inflammatory mechanism. Radiat Res, 177, 18-4. https://doi.org/10.1667/RR2793.1
  145. Mukherjee D, Coates PJ, Lorimore SA, Wright EG (2014). Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol, 232, 289-9. https://doi.org/10.1002/path.4299
  146. Multhoff G, Radons J (2012). Radiation, inflammation, and immune responses in cancer. Front Oncol, 2, 58-92.
  147. Nadova S, Miadokova E, Alfoldiova L, et al (2008). Potential antioxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuro Endocrinol Lett, 29, 649-2.
  148. Nawrot R, Zauber H, Schulze WX (2014). Global proteomic analysis of Chelidonium majus and Corydalis cava (Papaveraceae) extracts revealed similar defense-related protein compositions. Fitoterapia, [Epub ahead of print].
  149. Nemavarkar P, Chourasia BK, Pasupathy K (2004). Evaluation of radioprotective action of compounds using Saccharomyces cerevisiae. J Environ Pathol Toxicol Oncol, 23, 145-1. https://doi.org/10.1615/JEnvPathToxOncol.v23.i2.70
  150. Pal A, Pal AK (2005). Radioprotection of turmeric extracts in bacterial system. Acta Biol Hung, 56, 333-3. https://doi.org/10.1556/ABiol.56.2005.3-4.16
  151. Pal S, Saha C, Dey SK (2013). Studies on black tea (CamelliA. sinensis) extract as a potential antioxidant and a probable radioprotector. Radiat Environ Biophys, 52, 269-8. https://doi.org/10.1007/s00411-013-0463-z
  152. Palombo EA (2006). Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res, 20, 717-4. https://doi.org/10.1002/ptr.1907
  153. Panganiban RA, Mungunsukh O, Day RM (2013). X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat Biol, 1, 656-67.
  154. Para AE, Bezjak A, Yeung IW, Van Dyk J, Hill RP ( 2009). Effects of genistein following fractionated lung irradiation in mice. Radiother Oncol, 92, 500-0. https://doi.org/10.1016/j.radonc.2009.04.005
  155. Parihar VK, Dhawan J, Kumar S, et al (2007). Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chem Biol Interact, 170, 49-8. https://doi.org/10.1016/j.cbi.2007.07.006
  156. Park E, Hwang I, Song JY, Jee Y (2011). Acidic polysaccharide of Panax ginseng as a defense against small intestinal damage by whole-body gamma irradiation of mice. Acta Histochem, 113, 19-3. https://doi.org/10.1016/j.acthis.2009.07.003
  157. Peebles DD, Soref CM, Copp RR, Thunberg AL, Fahl WE (2012). ROS-scavenger and radioprotective efficacy of the new PrC-210 aminothiol. Radiat Res, 178, 57-68. https://doi.org/10.1667/RR2806.1
  158. Piaru SP, Mahmud R, Abdul Majid AM, Mahmoud Nassar ZD (2012). Antioxidant and antiangiogenic activities of the essential oils of Myristica fragrans and Morinda citrifolia. Asian Pac J Trop Med, 5, 294-8. https://doi.org/10.1016/S1995-7645(12)60042-X
  159. Pietrofesa R, Turowski J, Tyagi S, et al (2013). Radiation mitigating properties of the lignan component in flaxseed. BMC Cancer, 13, 179-96. https://doi.org/10.1186/1471-2407-13-179
  160. Pragya P, Shukla AK, Murthy RC, Abdin MZ, Kar Chowdhuri D (2014). Over-expression of superoxide dismutase meliorates Cr(vi) induced adverse effects via modulating cellular immune system of Drosophila melanogaster. PLoS One, 9, 88181-201. https://doi.org/10.1371/journal.pone.0088181
  161. Prakash H, Bala M, Ali A, Goel HC (2005). Modification of gamma radiation induced response of peritoneal macrophages and splenocytes by Hippophae rhamnoides (RH-3) in mice. J Pharm Pharmacol, 57, 1065-2. https://doi.org/10.1211/0022357056668
  162. Pritima RA, Pandian RS (2007). Antimicrobial activity of Coleus aromaticus (Benth) against microbes of reproductive tract infections among women. African J Infec Disease, 1, 18-2.
  163. Prouillac C, Vicendo P, Garrigues JC, Poteau R, Rima G (2009). Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity In vitro and theoretical studies (QSAR, DFT). Free Radic Biol Med, 46, 1139-8. https://doi.org/10.1016/j.freeradbiomed.2009.01.016
  164. Qiu J, Li J, He TC (2011). Endothelial cell damage induces a blood-alveolus barrier breakdown in the development of radiation-induced lung injury. Asia Pac J Clin Oncol, 7, 392-8. https://doi.org/10.1111/j.1743-7563.2011.01461.x
  165. Qiu X, Aiken KJ, Chokas AL, Beachy DE, Nick HS (2008). Distinct functions of CCAAT enhancer-binding protein isoforms in the regulation of manganese superoxide dismutase during interleukin-1beta stimulation. J Biol Chem, 283, 25774-85. https://doi.org/10.1074/jbc.M801178200
  166. Rajesh A, Sagar R, Singh S, et al (2007). Cytoprotective effect of Podophyllum hexandrum against gamma radiation is mediated via hemopoietic system stimulation and up-regulation of heme-oxygenase-1 and the prosurvival multidomain protein Bcl-2. Integr Cancer Ther, 6, 54-65. https://doi.org/10.1177/1534735406298303
  167. Ramachandran L, Nair CK (2011). Protection against genotoxic damages following whole body gamma radiation exposure in mice by lipoic acid. Mutat Res, 724, 52-8. https://doi.org/10.1016/j.mrgentox.2011.06.002
  168. Rao BSS, Shanbhoge R, Upadhya D, et al (2006). Antioxidant, anticlastogenic and radioprotective effect of Coleus aromaticus on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. Mutagenesis, 21, 237-2. https://doi.org/10.1093/mutage/gel023
  169. Rastogi S, Coates PJ, Lorimore SA, Wright EG (2012). Bystander-type effects mediated by long-lived inflammatory signaling in irradiated bone marrow. Radiat Res, 177, 244-0. https://doi.org/10.1667/RR2805.1
  170. Razi SS, Latif MJ, Li X, et al (2011). Dietary flaxseed protects against lung ischemia reperfusion injury via inhibition of apoptosis and inflammation in a murine model. J Surg Res, 171, 113-1. https://doi.org/10.1016/j.jss.2011.06.017
  171. Reboul FL (2004). Radiotherapy and chemotherapy in locally advanced non-small cell lung cancer: preclinical and early clinical data. Hematol Oncol Clin North Am, 18, 41-3. https://doi.org/10.1016/S0889-8588(03)00138-2
  172. Regenbrecht CR, Jung M, Lehrach H, Adjaye J (2008). The molecular basis of genistein-induced mitotic arrest and exit of self-renewal in embryonal carcinoma and primary cancer cell lines. BMC Med Genomics, 1, 49-64. https://doi.org/10.1186/1755-8794-1-49
  173. Rodemann HP, Blaese MA (2007). Responses of normal cells to ionizing radiation. Semin Radiat Oncol, 17, 81-8. https://doi.org/10.1016/j.semradonc.2006.11.005
  174. Roy SK, Agrahari UC, Gautam R, Srivastava A, Jachak SM (2012). Isointricatinol, a new antioxidant homoisoflavonoid from the roots of Caesalpinia digyna rottler. Nat Prod Res, 26, 690-5. https://doi.org/10.1080/14786419.2010.548813
  175. Saarinen NM, Power K, Chen J, Thompson LU (2006). Flaxseed attenuates the tumor growth stimulating effect of soy protein in ovariectomized athymic mice with MCF-7 human breast cancer xenografts. Int J Cancer, 119, 925-1. https://doi.org/10.1002/ijc.21898
  176. Saglam H, Arar G (2003). Cytotoxic activity and quality control determinations on Chelidonium majus. Fitoterapia, 74, 127-9. https://doi.org/10.1016/S0367-326X(02)00312-X
  177. Samanta N, Kannan K, Bala M, Goel HC (2004). Radioprotective mechanism of Podophyllum hexandrum during spermatogenesis. Mol Cell Biochem, 267, 167-6. https://doi.org/10.1023/B:MCBI.0000049375.34583.65
  178. Samarth RM (2007). Protection against radiation induced hematopoietic damage in bone marrow of Swiss albino mice by Mentha piperita (Linn). J Rad Res, 48, 523-8. https://doi.org/10.1269/jrr.07052
  179. Samarth RM, Goyal PK, Kumar A (2004). Protection of Swiss albino mice against whole-body gamma irradiation by Mentha piperita (Linn.). Phytother Res, 18, 546-0. https://doi.org/10.1002/ptr.1483
  180. Samarth RM, Kumar A (2003). Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.). J Radiat Res, 44, 101-9. https://doi.org/10.1269/jrr.44.101
  181. Samarth RM, Panwar M, Kumar M, et al (2008). Evaluation of antioxidant and radical-scavenging activity of certain radioprotective plant extracts. Food Chem, 106, 868-3. https://doi.org/10.1016/j.foodchem.2007.05.005
  182. Samarth RM, Samarth M (2009). Protection against radiationinduced testicular damage in swiss albino mice by Mentha piperita (Linn.). Basic Clin Pharmacol Toxicol, 104, 329-4. https://doi.org/10.1111/j.1742-7843.2009.00384.x
  183. Samojlik I, Petkovic S, Mimica-Dukic N, Bozin B (2012). Acute and chronic pretreatment with essential oil of peppermint (Mentha piperita L, Lamiaceae) influences drug effects. Phytother Res, 26, 820-5. https://doi.org/10.1002/ptr.3638
  184. Sharan RN, OdyuomM, Purkayastha, S (2011). Oxygen free radicals and its biomedical implications: A mini review. Mini Rev Org Chem, 8, 372-6. https://doi.org/10.2174/157019311797440344
  185. Sharma A, Sharma MK, Kumar M (2007). Protective effect of Mentha piperita against arsenic-induced toxicity in liver of Swiss albino mice. Basic Clin Pharmacol Toxicol, 100, 249-7. https://doi.org/10.1111/j.1742-7843.2006.00030.x
  186. Sharma KK, Milligan JR, Bernhard WA (2008). Multiplicity of DNA single-strand breaks produced in pUC18 exposed to the direct effects of ionizing radiation. Radiat Res, 170, 156-2. https://doi.org/10.1667/RR1277.1
  187. Sharma KK, Razskazovskiy Y, Purkayastha S, Bernhard WA (2009). Mechanisms of strand break formation in DNA due to the direct effect of ionizing radiation: the dependency of free base release on the length of alternating CG oligodeoxynucleotides. J Phys Chem B, 113, 8183-1. https://doi.org/10.1021/jp900803b
  188. Sharma M, Kumar M (2007). Radioprotection of Swiss albino mice by Myristica fragrans houtt. J Radiat Res, 48, 135-1. https://doi.org/10.1269/jrr.0637
  189. Shukla SK, Chaudhary P, Kumar IP, et al (2006). Protection from radiation-induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides. Environ Mol Mutagen, 47, 647-6. https://doi.org/10.1002/em.20251
  190. Shuryak I, Brenner DJ (2010). Effects of radiation quality on interactions between oxidative stress, protein and DNA damage in Deinococcus radiodurans. Radiat Environ Biophys, 49, 693-3. https://doi.org/10.1007/s00411-010-0305-1
  191. Si HY, Li DP, Wang TM, et al (2010). Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nanosci Nanotechnol, 10, 2325-1. https://doi.org/10.1166/jnn.2010.1913
  192. Singh I, Sharma A, Nunia V, Goyal PK (2005). Radioprotection of Swiss albino mice by Emblica officinalis. Phytother Res, 19, 444-6. https://doi.org/10.1002/ptr.1600
  193. Singh U, Kunwar A, Srinivasan R, Nanjan MJ, Priyadarsini IK (2009). Differential free radical scavenging activity and radioprotection of Caesalpinia digyna extracts and its active constituent. J Radiat Res, 50, 425-3. https://doi.org/10.1269/jrr.08123
  194. Son TG, Gong EJ, Bae MJ, et al (2013). Protective effect of genistein on radiation-induced intestinal injury in tumor bearing mice. BMC Complement Altern Med, 13, 103-14. https://doi.org/10.1186/1472-6882-13-103
  195. Song JY, Yang HO, Shim JY, et al (2003). Radiation protective effect of an extract from Chelidonium majus. Int J Hematol, 78, 226-2. https://doi.org/10.1007/BF02983799
  196. Srinivasan M, Rajendra Prasad N, Menon VP (2006). Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat Res, 611, 96-3. https://doi.org/10.1016/j.mrgentox.2006.07.002
  197. Srinivasan R, Chandrasekar MJ, Nanjan MJ, Suresh B (2007). Antioxidant activity of Caesalpinia digyna root. J Ethnopharmacol, 113, 284-1. https://doi.org/10.1016/j.jep.2007.06.006
  198. Suleyman H, Gumustekin K, Taysi S (2002). Beneficial effects of Hippophae rhamnoides L on nicotine induced oxidative stress in rat blood compared with vitamin E. Biol Pharm Bull, 25, 1133-6. https://doi.org/10.1248/bpb.25.1133
  199. Sun Y, Tang J, Gu X, Li D (2005). Water-soluble polysaccharides from AngelicA. sinensis (Oliv.) Diels: Preparation, characterization and bioactivity. Int J Biol Macromol, 36, 283-9. https://doi.org/10.1016/j.ijbiomac.2005.07.005
  200. Sureshbabu AV, Barik TK, Namita I, Prem Kumar I (2008). Radioprotective properties of Hippophae rhamnoides (sea buckthorn) extract in vitro. Int J Health Sci, 2, 45-62.
  201. Swarts SG, Gilbert DC, Sharma KK, et al (2007). Mechanisms of direct radiation damage in DNA, based on a study of the yields of base damage, deoxyribose damage, and trapped radicals in d(GCACGCGTGC)(2). Radiat Res, 168, 367-81. https://doi.org/10.1667/RR1058.1
  202. Tajuddin, Ahmad S, Latif A, Qasmi IA, Amin KM (2005). An experimental study of sexual function improving effect of Myristica fragrans Houtt. (nutmeg). BMC Complement Altern Med, 5, 16-6. https://doi.org/10.1186/1472-6882-5-16
  203. Talhouk RS, Karam C, Fostok S, El-Jouni W, Barbour EK (2007). Anti-inflammatory bioactivities in plant extracts. Review. J Med Food, 10, 1-10. https://doi.org/10.1089/jmf.2005.055
  204. Tayarani-Najaran Z, Talasaz-Firoozi E, Nasiri R, Jalali N, Hassanzadeh M (2013). Antiemetic activity of volatile oil from Mentha spicata and Mentha piperita in chemotherapyinduced nausea and vomiting. Ecancermedicalscience, 7, 290-5.
  205. Thotala D, Chetyrkin S, Hudson B, et al (2009). Pyridoxamine protects intestinal epithelium from ionizing radiationinduced apoptosis. Free Radic Biol Med, 47, 779-5. https://doi.org/10.1016/j.freeradbiomed.2009.06.020
  206. Thuong PT, Hung TM, Khoi NM, et al (2013). Cytotoxic and anti-tumor activities of lignans from the seeds of Vietnamese nutmeg Myristica fragrans. Arch Pharm Res, [Epub ahead of print].
  207. Tiwari SS, PandeymM, Srivastava S, Rawat AK (2012). TLC densitometric quantification of picrosides (picroside-I and picroside-II) in Picrorhiza kurroa and its substitute Picrorhiza scrophulariiflora and their antioxidant studies. Biomed Chromatogr, 26, 61-8. https://doi.org/10.1002/bmc.1626
  208. Tokalov SV, Abramyuk AM, Abolmaali ND (2010). Protection of p53 wild type cells from taxol by genistein in the combined treatment of lung cancer. Nutr Cancer, 62, 795-1. https://doi.org/10.1080/01635581003605912
  209. Uglyanitsa KN, Nefyodov LI, Doroshenko YM, et al (2000). Ukrain: a novel antitumor drug. Review. Drugs Exp Clin Res, 26, 341-56.
  210. Upadhyay D, Dash RP, Anandjiwala S, Nivsarkar M (2013). comparative pharmacokinetic profiles of picrosides I and II from kutkin, Picrorhiza kurroa extract and its formulation in rats. Fitoterapia, 85, 76-3. https://doi.org/10.1016/j.fitote.2013.01.004
  211. Vijayavel K, Anbuselvam C, Ashokkumar B (2013). Protective effect of Coleus aromaticus benth (Lamiaceae) against naphthalene-induced hepatotoxicity. Biomed Environ Sci, 26, 295-2.
  212. Wang J, Xu HW, Li BS, Zhang J, Cheng J (2012). Preliminary study of protective effects of flavonoids against radiationinduced lung injury in mice. Asian Pac J Cancer Prev, 13, 6441-6. https://doi.org/10.7314/APJCP.2012.13.12.6441
  213. Wang L, Chen J, Thompson LU (2005). The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components. Int J Cancer, 116, 793-8. https://doi.org/10.1002/ijc.21067
  214. Wang YN, Wu W, Chen HC, Fang H (2010). Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation. J Dermatol Sci, 58, 19-7. https://doi.org/10.1016/j.jdermsci.2010.02.002
  215. Wang ZD, Qiao YL, Tian XF, et al (2012). Toll-like receptor 5 agonism protects mice from radiation pneumonitis and pulmonary fibrosis. Asian Pac J Cancer Prev, 13, 4763-7. https://doi.org/10.7314/APJCP.2012.13.9.4763
  216. Weiss JF, Landauer MR (2003). Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology, 189, 1-20. https://doi.org/10.1016/S0300-483X(03)00149-5
  217. Xie CH, Zhang MS, Zhou YF, et al (2006). Chinese medicine AngelicA. sinensis suppresses radiation-induced expression of TNF-alpha and TGF-beta1 in mice. Oncol Rep, 15, 1429-6.
  218. Yang T, Jia M, Meng J, Wu H, Mei Q (2006). Immunomodulatory activity of polysaccharide isolated from AngelicA. sinensis. Int J Biol Macromol, 39, 179-4. https://doi.org/10.1016/j.ijbiomac.2006.02.013
  219. Yang T, Jia M, Zhou S, Pan F, Mei Q (2012). Antivirus and immune enhancement activities of sulfated polysaccharide from AngelicA. sinensis. Int J Biol Macromol, 50, 768-2. https://doi.org/10.1016/j.ijbiomac.2011.11.027
  220. Yang X, Zhao Y, Zhou Y, et al (2007). Component and antioxidant properties of polysaccharide fractions isolated from AngelicA. sinensis (OLIV.) DIELS. Biol Pharm Bull, 30, 1884-0. https://doi.org/10.1248/bpb.30.1884
  221. Yao JY, Zhou ZM, Pan XY, et al (2011). In vivo anthelmintic activity of chelidonine from Chelidonium majus L. against Dactylogyrus intermedius in carassius auratus. Parasitol Res, 109, 1465-9. https://doi.org/10.1007/s00436-011-2416-2
  222. Yu H, Zheng L, Yin L, et al (2014). Protective effects of the total saponins from Dioscorea nipponica makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. Int Immunopharmacol, [Epub ahead of print].
  223. Zeb A (2004). Important therapeutic uses of sea buckthorn (Hippophae), J Biol Sci, 4, 687-3. https://doi.org/10.3923/jbs.2004.687.693
  224. Zemskov V, Prokopchuk O, Susak Y, et al (2002). Efficacy of ukrain in the treatment of pancreatic cancer. Langenbecks Arch Surg, 387, 84-9. https://doi.org/10.1007/s00423-002-0293-y
  225. Zhang C, Qi X, Shi Y, et al (2012). Estimation of trace elements in mace (Myristica fragrans houtt) and their effect on uterine cervix cancer induced by methylcholanthrene. Biol Trace Elem Res, 149, 431-4. https://doi.org/10.1007/s12011-012-9443-4
  226. Zhang LY, Wang XL, Sun DX, et al (2008). Regulation of zinc transporters by dietary flaxseed lignan in human breast cancer xenografts. Mol Biol Rep, 35, 595-0. https://doi.org/10.1007/s11033-007-9129-8
  227. Zhang P, Mao YC, Sun B, Qian M, Qu WJ (2005). Changes in apoptosis-related genes expression profile in human breast carcinoma cell line Bcap-37 induced by flavonoids from seed residues of Hippophae rhamnoides L. Ai Zheng, 24, 454-0.
  228. Zhang S, He B, Ge J, et al (2010). Extraction, chemical analysis of AngelicA. sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats. Int J Biol Macromol, 47, 546-0. https://doi.org/10.1016/j.ijbiomac.2010.07.012
  229. Zhang Y, Zhu G, Gu S, et al (2010). Genistein inhibits osteolytic bone metastasis and enhances bone mineral in nude mice. Environ Toxicol Pharmacol, 30, 37-4. https://doi.org/10.1016/j.etap.2010.03.016
  230. Zhang Z, Guo Y, Wei X (2011). Screen for natural benzylisoquinoline alkaloids against tumor. Zhongguo Zhong Yao Za Zhi, 36, 2684-8.
  231. Zhao L, Wang Y, Shen HL, et al (2012). Structural characterization and radioprotection of bone marrow hematopoiesis of two novel polysaccharides from the root of AngelicA. sinensis (Oliv.) diels. Fitoterapia, 83, 1712-0. https://doi.org/10.1016/j.fitote.2012.09.029
  232. Zhou Y, Mi MT (2005). Genistein stimulates hematopoiesis and increases survival in irradiated mice. J Radiat Res, 46, 425-3. https://doi.org/10.1269/jrr.46.425
  233. Zuo GY, Meng FY, Hao XY, et al (2008). Antibacterial alkaloids from Chelidonium majus L (papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus. J Pharm Pharm Sci, 11, 90-4.

Cited by

  1. Influence of Propofol, Isoflurane and Enflurance on Levels of Serum Interleukin-8 and Interleukin-10 in Cancer Patients vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6703
  2. Radiosensitization Effects of a Zataria multiflora Extract on Human Glioblastoma Cells vol.16, pp.16, 2015, https://doi.org/10.7314/APJCP.2015.16.16.7285
  3. Wild Carrot Oil Extract is Selectively Cytotoxic to Human Acute Myeloid Leukemia Cells vol.16, pp.2, 2015, https://doi.org/10.7314/APJCP.2015.16.2.761
  4. Preventive and Therapeutic Effects of Quercetin on Experimental Radiation Induced Lung Injury in Mice vol.16, pp.7, 2015, https://doi.org/10.7314/APJCP.2015.16.7.2909
  5. Gamma irradiation-induced liver injury and its amelioration by red ginseng extract vol.13, pp.4, 2017, https://doi.org/10.1007/s13273-017-0050-5
  6. Experimental Study of Yeast RNA Preparation as a Possible Radioprotective Agent for Radiotherapy of Malignant Tumors vol.163, pp.5, 2017, https://doi.org/10.1007/s10517-017-3868-x
  7. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with ‘standard of care’ medicinal and procedures not requiring regulatory approval for use vol.93, pp.9, 2017, https://doi.org/10.1080/09553002.2017.1332440
  8. Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy vol.13, pp.6, 2017, https://doi.org/10.3892/ol.2017.6042
  9. Quality evaluation of Panax quinquefolium from different cultivation regions based on their ginsenoside content and radioprotective effects on irradiated mice vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37959-9