• Title/Summary/Keyword: irradiation crosslinking

Search Result 99, Processing Time 0.02 seconds

Investigations on ionic polymer actuators based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene)

  • Wang, Xuan-Lun;Oh, Il-Kwon;Xu, Liang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.316-317
    • /
    • 2009
  • The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed a novel ionomer named by sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and proton conductivity are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement as a novel smart material.

  • PDF

Photocrosslinking of PEO Films Using UV Irradiation (자외선 조사를 이용한 PEO 필름의 광가교)

  • Gu, Gwang-Hoe;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.28-30
    • /
    • 2008
  • Poly(ethylene oxide)(PEO) of molecular weight of 300,000 was crosslinked by exposure to UV irradiation. Photochemical crosslinking of PEO occurred by UV irradiation and the presence of benzophenone in the film which acts as a hydrogen-abstracting agent. Percent conversion of the polymer into gel as well as water absorbency were investigated gravimetrically. Gel fraction and water absorbency of PEO films increased with increasing UV energy. In case of photocrosslinked PEO films with benzophenone, gel fraction increased up to about 90%. The thermal behavior of crosslinked PEO films was studied by thermogravimetric analysis. The maximum decomposition temperature increased with increasing UV energy and benzophenone concentration.

  • PDF

The Aging Effects on Electrical Properties for the Irradiated EPDM (방사선을 조사한 EPDM에서 전기적 특성의 경년열화 효과)

  • 류부형
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.78-87
    • /
    • 2000
  • The $\gamma$-ray irradiation and aging effects on electrical characteristics of $^{60}Co$ $\gamma$-ray irradiated ethylene-propylene-diene-terpolymer(EPDM) contained with 1 to 3phr phenolic and quinolinic antioxidants as antirads were investigated. The marked effects of type and amounts of the antioxidant on the volume resistivity and AC breakdown strength of the $\gamma$-ray irradiated EPDM are different. A phenolic antioxidant(IR 1010) contribute to improving the electrical insulation properties on the EPDM better than quinolinic antioxidant(Kumanox RD) during irradiation. In aging the irradiated EPDM specimens contained antioxidants at room temperature in air, it was shown a improvement of insulation properties due to radical scavenging and crosslinking of EPDM aged until 360 days.

  • PDF

Synthesis and Characterization of N,O-Carboxymethylchitosan Hydrogel Crosslinked by γ-ray Irradiation

  • Gwon, Hui-Jeong;Lim, Youn-Mook;An, Sung-Jun;Youn, Min-Ho;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • In order to develop a water-solubility and biocompatibility, chemically modified chitosan, N,O-carboxymethylchitosan (NOCC), was synthesized and the NOCC hydrogels were prepared by using ${\gamma}-ray$ irradiation instead of chemical reagents. The FT-IR spectroscopy, swelling behavior, gel content and mechanical property such as gel strength of the hydrogel were measured. When the NOCC solution concentration was 15 wt% and the dose of irradiation was less than 50 kGy, the NOCC hydrogels had an excellent hydrophilicity and exhibited a good swelling behavior and mechanical properties.

Morphological Aspects of Water Treeing in $Co^{60}$ $\gamma$-ray Irradiated Polyethylene ($Co^{60}$ $\gamma$-선으로 조사된 Polyethylene에서 수트리 현상의 구조적 측면에 관한 연구)

  • Lee, B.W.;Kim, J.T.;Koo, J.Y.;Ryu, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.435-438
    • /
    • 1991
  • This work is aimed to clarify the effect of only crosslinking of polyethylene on the water tree propagation and thus the crosslinking of LDPE was made by use of $Co^{60}$ $\gamma$-ray irradiation at room temperature. For this purpose, before water tree testing under same test conditions, injection molded samples were made of LDPE using CNRS laboratory model and also some of them were irradiated under different dose rate for crosslinking. Afterwards, the aged specimens were put into microscopic investigation as a mean to compare their different morphological aspects by use of SEM for the fractured surface. The SEM observation points out that the untreed region in the irradiated PE shows the densed structure whereas that in the LDPE is not closely packed. Also in the water treed region of LDPE, the density and the dimension of voids are higher than those in irradiated PE. Based on our results, it seems that the difference in the PE structure could sufficiently contribute to cause the different water tree propagation of these materials.

  • PDF

Separation of Water and Oil by Poly(acrylic acid)-coated Stainless Steel Mesh Prepared by Radiation Crosslinking (방사선가교로 제조된 폴리아크릴산 코팅 스테인리스그물망에 의한 유수 분리)

  • Nho, Young-Chang;Shin, Jung-Woong;Park, Jong-Seok;Lim, Youn-Mook;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

  • Gong, Pin;Ni, Minxuan;Chai, Hao;Chen, Feida;Tang, Xiaobin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.470-477
    • /
    • 2018
  • With a highly functional methyl vinyl silicone rubber (VMQ) matrix and filler materials of $B_4C$, PbO, and benzophenone (BP) and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were $323.6^{\circ}C$ and $335.3^{\circ}C$, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am-Be neutron source. The transmission of ${\gamma}$-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively.

Effect of the Radiation Crosslinking and Heating on the Heat Resistance of Polyvinyl Alcohol Hydrogels (PVA 하이드로겔의 내열특성에 방사선 가교와 열처리가 미치는 효과)

  • Park, Kyoung Ran;Nho, Young Chang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Polyvinyl alcohol (PVA) hydrogels were prepared by the irradiation and heating. Irradiation and heating processes were carried out to improve the heat resistance of PVA hydrogels at high temperature. The physical properties such as gel content, degree of swelling and gel strength for the synthesized hydrogels were examined. The structure variations were investigated using the following techniques: differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Gel content and gel strength of the hydrogels were higher when the two steps of irradiation followed by heat treatment were used rather than only with the irradiation. The hydrogels prepared by the irradiation and the two steps had good heat resistance at high temperature.

Synthesis and Biocompatibility of PVA/NaCMC Hydrogels Crosslinked by Cyclic Freezing/thawing and Subsequent Gamma-ray Irradiation

  • Shin, Ji-Yeon;Jeong, Heeseok;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.161-167
    • /
    • 2018
  • Polyvinyl alcohol/sodium carboxymethyl cellulose (PVA/NaCMC) hydrogels were prepared by physical crosslinking (cyclic freezing/thawing) and gamma (${\gamma}$)-ray irradiation to evaluate the effect of NaCMC concentration (2~8 wt%) on the mechanical properties and the biocompatibility of the PVA/NaCMC hydrogels. The swelling rate of PVA/NaCMC hydrogels regardless of irradiation rose with increasing NaCMC content from 2 wt% to 8 wt%, while the gelation rate was the reverse. As the NaCMC content increased from 2 wt% to 6 wt%, the compressive strength of the hydrogels increased dramatically from $8.5{\pm}2.0kPa$ to $52.7{\pm}2.5kPa$ before irradiation and from $13.5{\pm}2.9kPa$ to $65.5{\pm}8.7kPa$ after irradiation. When 8 wt% NaCMC was added afterwards, the compressive strength decreased however. The irradiated PVA/NaCMC hydrogels containing 6 wt% NaCMC exhibited the tailored properties of the swelling rate of $118{\pm}3.7%$, the gelation rate of $71.4{\pm}1.3%$, the strength of $65.5{\pm}8.7kPa$, respectively, and no cytotoxicity was observed.

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.