• Title/Summary/Keyword: iron-resistance

Search Result 400, Processing Time 0.03 seconds

A Study on the Oxidation Resistance of Aluminum Cast Iron by Aluminum Content (알루미늄 함량에 따른 알루미늄 주철의 내산화성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.135-145
    • /
    • 2020
  • Aluminum cast iron has excellent oxidation resistance, sulfurization resistance, and corrosion resistance. However, the ductility at room temperature is insufficient, and at temperatures above 600?, the strength drops sharply and practicality is limited. In the case of heat-resistant cast iron, high-temperature materials containing Cr and Ni account for 30 to 50% or more. However, these high-temperature materials are expensive. Aluminum heat-resistant cast iron is considered as a substitute for expensive heat-resistant materials. Oxidation due to the aging temperature and holding time conditions increases more in 0 wt.% Al-cast iron than in 2 and 4 wt.% Al-cast iron according to oxidized weight and gravimetric oxide layer thickness measurements. As a result of observing the cross-section of the oxide layer, it was found to contain 0 wt.% of Al-cast iron silicon oxide-containing SiO2 or Fe2SiO4 oxide film. In cast iron containing aluminum, the thickness of the internal oxide layer due to aluminum increases as the aging temperature and retention time increase, and the amount of the iron oxide layer generated on the surface decreases.

Characteristic Analysis of Single-phase Line-start Permanent Magnet Synchronous Motor Considering Iron Loss (철손을 고려한 단상 영구자석형 유도동기기의 특성해석)

  • Nam, Hyuk;Kang, Gyu-Hong;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.295-304
    • /
    • 2004
  • This paper deals with characteristic analysis method using d-q axis equivalent circuit considering iron loss in a single-phase line-start permanent magnet synchronous motor. The iron loss resistance to account for the iron loss is included in the equivalent circuit to improve the modeling accuracy. Furthermore, for the improved calculation of the iron loss, the iron loss is calculated from the magnetic flux density by 2-dimensional finite element method. The result is represented as the iron loss resistance and connected in parallel with the total induced voltage. Therefore, the currents can be expressed as the summation the output current with the current corresponding to the iron loss. Finally, the steady state characteristic analysis results are compared with the experimental results to verify this approach.

Effects of Carbide and Matrix Structures on Abrasion Wear Resistance of Multi-Component White Cast Iron (다합금계 백주철의 탄화물 및 기지조직이 내마모성에 미치는 영향)

  • Ryu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.310-316
    • /
    • 1997
  • The effects of carbide and matrix structures on the abrasion wear resistance of multi-component white cast irons with 3.0 mass%C have been studied in this paper. Four different heats were poured in order to obtain the specimens with different combinations of the carbide structures: a basic iron(3.0 mass%C-5.0 mass%Cr-5.0 mass%V-5.0 mass% Mo-12.5mass%W)for M$_{6}$C and M$_{7}$C$_{3}$ carbides, and a Cr free iron(3.0 mass%C-5.0 mass%V-2.5mass%Mo-12.5 mass%W) for MC and M6C carbides. A conventional high Cr free free iron(3.0 mass%C-5.0 mass%V-2.5 mass%Mo-12.5 mass%W) for MC and M6C carbides. A conventional high Cr white cast iron was also poured to compare its wear resistance with those of the multi-component white cast irons. In the as-cast condition, the range of abrasive wear rate(Rw=mg/min) was from 4.15 to 5.98 . The lowest Rw, which means the highest wear resistance, was obtained in the basic iron with nodular MC, lamellar M$_{2}$C and cellular M$_{7}$C$_{3}$ carbides. On the other hand, the Rw of the high Cr white cast iron ranked between the basic iron and the Mo and W free iron. In each alloy, the Rw of air hardened or tempered specimen was lower than that of the as-cast one because of the change of matrix structures by the heat treatments. The Rw of the hear treated speci-mens increased in the order Mo and W free iron, basic iron, Cr free iron, high Cr iron, and V free iron.n.n.n.

  • PDF

A Study on the Graphitization and Scaling Resistance property of High Al-Cast Iron (고(高)알루미늄 내열주철(耐熱鑄鐵)에서의 흑연구상화(黑鉛球狀化)와 내산화성(耐酸化性)에 관한 연구(硏究))

  • Kim, D.K.;La, H.Y.
    • Journal of Korea Foundry Society
    • /
    • v.1 no.2
    • /
    • pp.2-9
    • /
    • 1981
  • Graphite spheroidization and scaling resistance of cast iron containing 5-10% Al were investigated. It is impossible to obtain spheroidal graphite in cast iron containing Al with 8 % and over, but possible to obtain spheroidal graphite even in cast iron with an Al content of about 10 % by increasing Si content. In the scaling test carried out under the heating condition of $950^{\circ}C$ in air for total of 50 hours, the scaling resistance of cast iron containing Al with 8 % and over was remarkably superior, and also spheroidal graphite cast iron was superior to flake graphite cast iron. The scale became thinner more compacts and more protective with increasing Al content.

  • PDF

Study on Flaking Resistance of Hot-dip Galvanizing Coating

  • Taixiong, Guo;Ping, Yuan;Yongqing, Jin;chunfu, Liu;Wei, Li
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2010
  • For the issue of flaking of the hot-dip galvanizing coating during drawing, the microcosmic characteristics of the coatings have been analyzed and experiments have been done to investigate the influence of coating thickness, Al content and steel substrate strength on its flaking-resistance. The results show that the fact of flaking is that the coating partially flaked off at the position far away from interface of steel substrate and coating, and not entirely flaked off from steel substrate because of poor adhesion. The flaking-resistance of coating decreases with the increasing of coating thickness and steel substrate strength, and increases with the increasing of Al content in coating at the same experimental conditions.

Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

  • Saikia, Ratul;Srivastava, Alok K.;Singh, Kiran;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that an the bacterial isolates produced more salicylic acid (SA) at low iron ($10\;{\mu}M$ EDDHA) than high iron availability ($10\;{\mu}Fe^{3+}$ EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

Effect of Microstructure on the Corrosion Resistance of Nd-Fe-B Permanent Magnets

  • Li, Jiajie;Li, Wei;Li, Anhua;Zhao, Rui;Lai, Bin;Zhu, Minggang
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.304-307
    • /
    • 2011
  • High performance Nd-Fe-B magnets can be manufactured by both sintering and hot deformation. The corrosion behaviors of the magnets prepared by the two processes were compared. Effect of microstructure on the corrosion resistance of Nd-Fe-B magnets was also investigated. A neutral salt spray test (NSS) was performed for the different-processed magnets. The weight losses of the samples after the corrosion test were measured. The corrosion microstructures were observed using a scanning electron microscope. It shows that the corrosion resistance of hot deformed magnets is much better than that of the sintered ones because the grain size and the distribution of Nd-rich phases of the hot deformed magnets are much finer and more uniform than those of the sintered ones. The different microstructure between the sintered and the hot deformed magnets causes the different corrosion behavior.

Improvement of Fatigue Limit in Spheroidal Graphite Cast Iron with High Strength and Toughness (고강도·고인성 구상흑연주철의 피로한도의 개선)

  • Kim, M.G.;Kim, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.40-46
    • /
    • 1999
  • Rotary bending fatigue tests were carried out to investigate the improvement of fatigue limit in annealed and austempered spheroidal graphite cast iron. Main results obtained are as follows. (1) The tensile strength(hardness) of Series C is higher than that of Series B, and fatigue limits are 245MPa in Series C, 230MPa in Series B and 195MPa in Series A, respectively. (2) The fatigue limits of Series B and Series A are mainly governed by the resistance to fatigue crack initiation. Whereas, the fatigue limit of Series C is governed by the resistance to fatigue crack initiation and growth. The defect size and the resistance to crack initiation and growth should be considered to clarify the fatigue properties in spheroidal graphite cast iron. (3) Improvement of fatigue limit by half-austempering is more reasonable than that of full-austempering treatment in multi defective materials as spheroidal graphite cast iron.

  • PDF

Properties of Soft Magnetic Composite with Evaporated MgO Insulation Coating for Low Iron Loss

  • Uozumi, Gakuji;Watanabe, Muneaki;Nakayama, Rryoji;Igarashi, Kazunori;Morimoto, Koichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1288-1289
    • /
    • 2006
  • Innovative SMC with low iron loss was made from iron powders with evaporated MgO insulation coating. The coating had greater heat-resistance than conventional phosphatic insulation coating, which enabled stress relieving annealing at higher temperature. Magnetic properties of toroidal samples (OD35mm,ID25mm, t5) were examined. The iron loss at 50Hz for Bm = 1.5T was lower 50% of conventional SMC and was almost the same with silicon iron laminations(t0.35). It became clear that MgO insulation coating has enough heat resistance and adhesiveness to powdersurface to obtain innovative SMC with low iron loss.

  • PDF