• Title/Summary/Keyword: iron-core

Search Result 434, Processing Time 0.029 seconds

Performance test of an electronic instrument transformer mounted an error compensating method for instrument transformer (변성기의 오차 보상 방법이 탑재된 전자식 변성기의 성능 평가)

  • Kang, Yong-Cheol;Park, Jong-Min;Jang, Sung-Il;Yun, Jae-Sung;Kim, Yong-Gyun;Lee, Byung-Sung;Song, Il-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.760-761
    • /
    • 2007
  • Instrument transformers provide the reproduction of the primary current or voltage to the measuring and protecting devices. The errors of an iron-cored transformer are caused by the difference between the primary and secondary currents due to the hysteresis characteristics of the iron-core. An error compensating algorithm for instrument transformer can improve the accuracy of conventional current and voltage transformers. This paper describes the performances of the electronic current and voltage transformers mounted an error compensating algorithm. The test results of the electronic transformers in Korea Electrotechnology Research Institute(KERI) are presented.

  • PDF

구조물 진동제어용 리니어 모터 탬퍼의 제작 및 특성 실험

  • Jang, S.M.;Jeong, S.S.;Lee, S.H.;Ham, S.Y.;Kim, B.I.;Park, H.D.;Jung, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.85-87
    • /
    • 2001
  • Linear motor damper(LMD) for vibration control of structure is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The active mass of LMD is 1.5 ton and consisted of permanent magnet and iron yoke. In this paper, LMD system is manufactured and tested for dynamic characteristics and frequency response.

  • PDF

Simultaneous Observation of Fe-F and F-Fe-F Stretching Vibrations of Fluoride Anion Ligated Tetraphenylporphyrin Iron(Ⅲ) by Resonance Raman Spectroscopy

  • 이인숙;신지영;남학현;김도균;팽기정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.730-733
    • /
    • 1997
  • Monofluoroiron(Ⅲ) tetraphenylporphyrin, Fe(TPP)F, and difluoroiron(Ⅲ) tetraphenylporphyrin, [Fe(TPP)F2]- were generated in a various non-aqueous solvents by the reaction between Fe(TPP)Cl and tetrabutylammonium fluoride TBAF 3H2O. Formation of the these complexes was detected by the appearance of the ν(F-Fe) (ν, stretching vibration) at 506 cm-1 for Fe(TPP)F and the ν(F-Fe-F) at 448 cm-1 for [Fe(TPP)F2]-, simultaneously, with 441.6 nm excitation by Resonance Raman (RR) spectroscopy. These assignments were confirmed by observed frequency shifts due to 56Fe/54Fe and TPP/TPP-d8/TPP-N15 isotopic substitutions. Difluoroiron complex is an iron(Ⅲ) high-spin complex with the oxidation sensitive band at 1347 cm-1 for ν4 and core size/spin state sensitive band at 1541 cm-1 for ν2.

Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process

  • Wonchull Kang
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.736-742
    • /
    • 2023
  • NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.

The Widening of Fault Gouge Zone: An Example from Yangbuk-myeon, Gyeongju city, Korea (단층비지대의 성장: 경주시 양북면 부근의 사례)

  • Chang, Tae-Woo;Jang, Yun-Deuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • A fault gouge zone which is about 25cm thick crops out along a small valley in Yangbuk-myeon, Gyeongju city. It is divided into greenish brown gouge and bluish gray gouge by color. Under the microscope, the gouges have a lot of porphyroclasts composed of old gouge fragments, quartz, feldspar and iron minerals. Clay minerals are abundant in matrix, defining strikingly P foliation by preferred orientation. Microstructural differences between bluish pay gouge and greenish brown gouge are as follows: greenish brown gouge compared to bluish gray gouge is (1) rich in clay minerals, (2) small in size and number of porphyroclasts, and (3) plentiful in iron minerals which are mostly hematites, while chiefly pyrites in bluish gray gouge. Hematites are considered to be altered from pyrites in the early-formed greenish brown gouge under the influence of hydrothermal fluids accompanied during the formation of bluish gray gouge that also precipitated pyrites. It is believed that the fault core including bluish gray gouge zone and greenish brown gouge zone was formed by progressive cataclastic flow. In the first stage the fault core initiates from damage zone of early faulting. In the second stage damage zone actively transforms into breccia zone by repeated fracturing. The third stage includes greenish brown (old) gouge formation in the center of the fault core mainly by particle grinding. In the third stage further deformation leads to the formation of new (bluish gray) gouge zone while old gouge zone undergoes strain hardening. Consequently, the whole gouge zone in the core widens.

Current Limiting and Recovery Characteristics of Two Magnetically Coupled Type SFCL with Two Coils Connected in Parallel Using Dual Iron Cores (이중철심을 이용한 병렬연결된 자기결합형 초전도한류기의 전류제한 및 회복특성)

  • Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.717-722
    • /
    • 2016
  • In this paper, in order to support the peak current limiting function depending on the intensity of the fault current at the early stage of failure, a two magnetically coupled type superconducting fault current limiter (SFCL) is proposed, which includes high-Tc superconducting (HTSC) element 1, where the existing primary and secondary coils are connected to one iron core in parallel, and HTSC element 2, which is connected to the tertiary winding using an additional iron core. The results of the experiments in this study confirmed that the two magnetic coupling type SFCL having coil 1 and coil 2 connected in parallel using dual iron cores is capable of having only HTSC element 1 support the burden of the peak current when a failure occurs. The reason for this is that although HTSC element 1 was quenched and malfunctioned because the instantaneous factor of the initial fault current was large, the current flowing to coil 3 did not exceed the critical current, which would otherwise cause HTSC element 2 to be quenched and not function. In order to limit the peak current upon fault through the sequential HTSC elements, the design should allow it to have the same value as the low value of coil 1 while having coil 3 possess a higher self-inductance value than coil 2. In addition, a short-circuit simulation experiment was conducted to examine and validate the current limiting and recovery characteristics of the SFCL when the winding ratio between coil 1 and coil 2 was 0.25. Through the analysis of the short-circuit tests, the current limiting and recovery characteristics in the case of the additive polarity winding was confirmed to be superior to that of the subtractive polarity winding.

Carbothermic Reduction of Zinc Oxide with Iron Oxide (산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響))

  • Kim, Byung-Su;Park, Jin-Tae;Kim, Dong-Sik;Yoo, Jae-Min;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.44-51
    • /
    • 2006
  • Most electric arc furnace dust (EAFD) treatment processes to recover zinc from EAFD employ carbon as a reducing agent for the zinc oxide in the EAFD. In the present work, the reduction reaction of zinc oxide with carbon in the present of iron oxide was kinetically studied. The experiments were carried out at temperatures between 1173 K and 1373 K under nitrogen atmosphere using a weight-loss technique. From the experimental results, it was concluded that adding the proper amount of iron oxide to the reactant accelerates the reaction rate of zinc oxide with carbon. This is because iron oxide in the reduction reaction of zinc oxide with carbon promotes the carbon gasification reaction. The spherical shrinking core model for a surface chemical reaction control was found to be useful in describing kinetics of the reaction over the entire temperature range. The reaction has an activation energy of 53 kcal/mol (224 kJ/mol) for ZnO-C reaction system, an activation energy of 42 kcal/mol (175 kJ/mol) for $ZnO-Fe_{2}O_{3}-C$ reaction system, and an activation energy of 44 kcal/mol (184 kJ/mol) for ZnO-mill scale-C reaction system.

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun;Oh, Jung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.99-104
    • /
    • 2006
  • We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

Movement Characteristics Analysis of Single Phase Transformer Winding Using Finite Element Method (유한요소법을 이용한 단상변압기권선의 운동특성해석)

  • Choi, Myoung-Jun;Kim, Hyung-Seok;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.104-106
    • /
    • 1996
  • In this paper, the dynamic motion driven by electromagnetic force of transformer windings is modeled and its characteristics are numerically analyzed. The electromagnetic field is obtained using the 2D finite element method taking account of anisotropic property of iron core, and the electromagnetic force on the transformer winding is calculated from Lorenz's force formula using the field distribution result. The system motion equation driven by electromagnetic force and gravitational force is numerically analyzed using the 4-order Runge-Kutta algorithm. Above analyses procedure is applied to a single-phase core-type transformer to validate its algorithm.

  • PDF

Characterization of Fe Nanocapsules synthesized by Plasma Arc Discharge Process (플라즈마 아크방전(PAD)법으로 제조된 Fe Nanocapsules의 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.510-514
    • /
    • 2004
  • Iron-carbon nanocapsules were synthesized by plasma arc discharge (PAD) process under various atmosphere of methane, argon and hydrogen gas. Characterization and surface properties were investigated by means of HRTEM, XRD, XPS and Mossbauer spectroscopy. Fe nanocapsules synthesized were composed of three phases $({\alpha}-Fe,\;Y-Fe\;and\;Fe_{3}C)$ with core/shell structures. The surface of nanocapsules was covered by the shell of graphite phase in the thickness of $4{\~}5$nm.