• Title/Summary/Keyword: iron removal

Search Result 445, Processing Time 0.031 seconds

Effects of Alloying Elements and Binding Materials on the Corrosion Behavior of Metal Hydride Electrodes (금속수소화물전극의 부식특성에 미치는 합금원소와 결합제의 영향)

  • Lee, Yang-Boum;Choe, Han-Cheol;Park, Ji-Yoon;Kim, Kwan-Hyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 1998
  • It has been investigated the effects of alloying elements and binders on the corrosion behavior of metal hydride electrodes for anode of Ni/MH secondary battery. The $AB_5$-type alloys, $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ and $(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$, were used for the experiments. The electrodes were prepared by mixing and cold-pressing of alloy powders with Si sealent or PTFE powders, or cold-pressing the electroless copper coated alloy powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Characterization and Two-Phase Neutralization of Acid Mine Drainage (두 단계 중화적정에 의한 산성 광산 유출수 중의 중금속 제거)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 1999
  • Acid mine drainage (AMD) results from sulfuric acid produced by the oxidation of pyrite, and contains large amounts of toxic elements. In the neutralization of AMD, iron and aluminum hydroxides are the major precipitates and those two can be separated with two-phase neutralization. In this study, removal of toxic elements by the two phases of neutralization was investigated using an AMD collected from the abandoned antimony mine in Gachang, Taegu. Contents of As, Cd, Cu, Mn, Pb and Zn in the AMD were higher than the criteria of river water quality or permissible waste water discharge. In the first phase, the AMD was neutralized to several % (25, 50, 75, 100, and 125) of $Fe(OH)_3$ equivalence point with solid $Ca(OH)_2$. In the second phase, the supernatant of the first phase neutralization was titrated to pH 7.5. After neutralization of the AMD to 100% of the $Fe(OH)_3$, equivalence point, most of Fe and Pb were removed but levels of As, Cd, Cu, Ni, Mn, and Zn were not reduced in the supernatant solution. In the second phase neutralization, levels of those toxic elements in the supernatants dropped below the wastewater discharge or river water quality criteria. This result suggests that the precipitate formed in the first phase of the neutralization process may be disposed without any special cares. Thus the two-phase neutralization scheme can reduce the cost of disposing precipitates containing toxic metals in comparison with the monophase neutralization scheme.

  • PDF

Determining Kinetic Parameters and Stabilization Efficiency of Heavy Metals with Various Chemical Amendment (중금속 안정화제의 반응 매개변수 결정 및 중금속 안정화 효율성 평가)

  • Oh, Se-Jin;Kim, Sung-Chul;Kim, Tae-Hee;Yeon, Kyu-Hun;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1063-1070
    • /
    • 2011
  • In this study, total of 5 different chemical amendments were evaluated for determining kinetic parameters and stabilization efficiency of heavy metals in aqueous phase. Standard solution of Cd and Pb ($100mg\;L^{-1}$) was mixed with various ratio of amendments (1, 3, 5, 10%) and heavy metal stabilization efficiency was monitored for 24hrs. All examined amendments showed over 90% of removal efficiency for both Cd and Pb except zerovalent iron (ZVI) for Cd (43-63%). Based on result of heavy metal stabilization efficiency, it was ordered as $CaCO_3$ > Dolomite > Zeolite > Steel slag > ZVI for both Cd and Pb in aqueous phase. For kinetic study, first order kinetic model was adapted to calculate kinetic parameters. In terms of reaction rate constants (k), zeolite showed the fastest reaction rate (k value from 0.4882 for 1% to 2.0105 for 10%) for Cd and ZVI (k value from 0.2304 for 1% to 0.5575 for 10%) for Pb. Considering reaction rate constant and half life for heavy metal stabilization, it was ordered as Zeolite > $CaCO_3$ > Dolomite > Steel slag > ZVI for Cd and $CaCO_3$ > Dolomite > Steel slag > Zeolite > ZVI for Pb. Overall result in this study can be interpreted that lime containing materials are more beneficial to remove heavy metals with high efficiency and less time consuming than absorbent materials.

Study on Characteristics of Change of Urea and Biuret Content by Temperature Variation in Urea Solution (요소수(Urea solution)의 온도변화에 따른 요소 및 뷰렛함량 변화 특성 연구)

  • Doe, Jin-woo;Park, Tae-sung;Lee, Yu-rim;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1307-1319
    • /
    • 2018
  • As interests in the air pollution increases, many kinds of researches are underway on the reduction of air pollutants. The removal of nitrogen oxides from the emission gas of diesel vehicles using urea solution has shown a great effect. The quality of urea solution is strictly defined by domestic law, but the increase of impurities in urea solution reduces the effect of reducing nitrogen oxides. Therefore, in this study, the change of physical properties of urea solution was analyzed after heating the urea solution for a certain temperature and time. Also, the changes of physical properties of urea solution were analyzed according to kinds of storage container and temperature for storing the urea solution. After heating the urea solution for a certain period of time, the biuret content in urea solution increased and the content of urea decreased. As the urea content decreased, both density and refractive index decreased. In the storage stability test carried out at a constant temperature with iron and PET containers, no change in physical properties was observed.

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.

Influence of Bacterial Attachment on Arsenic Bioleaching from Mine Tailings: Dependency on the Ratio of Bacteria-Solid Substrate (광물찌꺼기 내 비소의 미생물 침출 시 박테리아 흡착 영향: 박테리아와 고체 기질 비율에 관한 연구)

  • Park, Jeonghyun;Silva, Rene A.;Choi, Sowon;Ilyas, Sadia;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • The present study investigates the bioleaching efficiencies of arsenic via contact and non-contact mechanisms. The attachment of Acidithiobacillus ferrooxidans was restricted by a partition system comprising a semi-permeable membrane with a molecular weight cutoff of 12-14 kDa. The results were compared for two arsenic concentrations in the system (1.0% and 0.5% w/v) to maintain a homogeneous system. The overall bacterial performance was monitored by comparing total arsenic and iron concentrations, Fe ion speciation, pH, and solution redox potentials in flask bioleaching experiments over a period of 10 d. Our results indicated that bacterial attachment could increase arsenic extraction efficiency from 20.0% to 44.9% at 1.0 % solid concentrations. These findings suggest that the bacterial contact mechanism greatly influences arsenic bioleaching from mine tailings. Therefore, systems involving two-step or non-contact bioleaching are less effective than those involving one-step or contact bioleaching for the efficient extraction of arsenic from mine tailings.

Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device (아연 이온화 장치에 의한 상수배관 내 스케일 및 녹 생성 억제효과 실증 연구)

  • Yum, Kyung-Taek;Choi, Jung-Wook;Yang, Sung-Bong;Shim, Hak-Sup;Yu, Mee-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.465-476
    • /
    • 2021
  • Scale and rust generation in water pipes is a common phenomenon when cast iron water pipes have been used for a long time. A physical water treatment device is known among various means for suppressing rust in a water pipe, and a zinc ionization device for putting zinc metal into a pipe and emitting the zinc cation into water is one of such devices. This research measured the amount of zinc ion generated, which is known to exhibit an effect of inhibiting rust and scale generation in a pipe, and examined the scale and rust inhibition effect of the ionization device installed for ground or building water supply. In the case of distilled water, the concentration of zinc ion increased by circulating water in the ionization device several times, and it was verified to be hundreds of ㎍/L, and in the case of discharging ground or tap water, it was verified to be tens of ㎍/L. In addition, a verification pipe was installed to confirm the change inside the pipe before and after installation of the zinc ionization device, and the internal condition of the pipe was observed 3 months to several years after installation. It was confirmed that the corrosion area of the surface of the pipe was no longer increased by installing a corrosion inhibitor, and if the pipe was already filled with corrosion products, the amount of corrosion products gradually decreased every year after installation. The phenomenon of fewer corrosion products could be interpreted as expanding the space in the pipe due to the corrosion product as Fe2O3 adhered to the inner surface of the pipe and turned into a smaller black Fe3O4. In addition, we found that scale such as CaCO3 together in the corrosion by-products gradually decreased with the attachment of the ionization device.

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.