DOI QR코드

DOI QR Code

Determining Kinetic Parameters and Stabilization Efficiency of Heavy Metals with Various Chemical Amendment

중금속 안정화제의 반응 매개변수 결정 및 중금속 안정화 효율성 평가

  • Oh, Se-Jin (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Biological Environment, Kangwon National University) ;
  • Kim, Tae-Hee (Department of Biological Environment, Kangwon National University) ;
  • Yeon, Kyu-Hun (Technology Research Center, Korea Mine Reclamation Corporation) ;
  • Lee, Jin-Soo (Technology Research Center, Korea Mine Reclamation Corporation) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
  • 오세진 (강원대학교 바이오자원환경학과) ;
  • 김성철 (강원대학교 바이오자원환경학과) ;
  • 김태희 (강원대학교 바이오자원환경학과) ;
  • 연규훈 (한국광해관리공단 광해기술연구소 연구개발팀) ;
  • 이진수 (한국광해관리공단 광해기술연구소 연구개발팀) ;
  • 양재의 (강원대학교 바이오자원환경학과)
  • Received : 2011.11.20
  • Accepted : 2011.11.24
  • Published : 2011.12.31

Abstract

In this study, total of 5 different chemical amendments were evaluated for determining kinetic parameters and stabilization efficiency of heavy metals in aqueous phase. Standard solution of Cd and Pb ($100mg\;L^{-1}$) was mixed with various ratio of amendments (1, 3, 5, 10%) and heavy metal stabilization efficiency was monitored for 24hrs. All examined amendments showed over 90% of removal efficiency for both Cd and Pb except zerovalent iron (ZVI) for Cd (43-63%). Based on result of heavy metal stabilization efficiency, it was ordered as $CaCO_3$ > Dolomite > Zeolite > Steel slag > ZVI for both Cd and Pb in aqueous phase. For kinetic study, first order kinetic model was adapted to calculate kinetic parameters. In terms of reaction rate constants (k), zeolite showed the fastest reaction rate (k value from 0.4882 for 1% to 2.0105 for 10%) for Cd and ZVI (k value from 0.2304 for 1% to 0.5575 for 10%) for Pb. Considering reaction rate constant and half life for heavy metal stabilization, it was ordered as Zeolite > $CaCO_3$ > Dolomite > Steel slag > ZVI for Cd and $CaCO_3$ > Dolomite > Steel slag > Zeolite > ZVI for Pb. Overall result in this study can be interpreted that lime containing materials are more beneficial to remove heavy metals with high efficiency and less time consuming than absorbent materials.

본 연구는 수용액 내 존재하는 Cd, Pb을 다양한 화학적 안정화제를 이용하여 안정화 효율성을 평가하였다. 연구에 사용한 안정화제는 중금속 이온과의 반응특성 별로 석회물질, 광물질 등으로 구분하여 문헌조사를 바탕으로 5종을 선정하여 사용했다. 안정화 효율성 평가방법은 용액 내 중금속 함량을 단계적으로 제조하여 안정화 효율성, 반감기 및 반응속도 산정 및 반응 후 안정화제의 반응생성물 확인의 순으로 진행했다. 안정화 효율성 평가결과 석회물질 ($CaCO_3$)을 다량 함유하여 기본적으로 pH를 8이상으로 교정하는 안정화제의 경우 처리량에 상관없이 대부분 불용화되는 것으로 나타났으며, 낮은 산도교정 물질은 50% 수준의 효율성을 갖는 것으로 나타났다. 또한, 효율성이 크게 나타난 물질을 대상으로 반응속도상수 (K)를 산출한 결과 Cd의 경우 처리량에 따라 증가하였지만, Pb의 경우 초기에 반응속도가 빠르게 일어나 처리량에 따른 평가는 불가능 하였다. 다량의 중금속 이온과 반응시킨 안정화제의 표면관찰을 통한 생성물 검정 결과 SEM 사진으로 반응 전 후의 생성물 확인을 간접적으로 확인하였다. 또한, SEM-EDS 분석결과 반응 후 물질 표면에서 Cd과 Pb의 성분 검출을 확인하였다. 그리고 XRD 분석을 통해 효율성이 좋았던 물질에서 Cd과 Pb 성분의 검출이 확인되어 수용액 상에 이온형태로 존재하는 중금속의 복원에 안정화제를 이용한 저감은 효율적일 것으로 판단된다.

Keywords

References

  1. Adriano, D.C. 1986. Trace Elements in the Terrestrial Environment. Springer Verlag New York Inc. 390-420.
  2. Amine, K., B. Fatima, M.K. Kheira, B.G. Isabelle, S. Jacques. 2010. Preparation, characterisation of thermally treated Algerian dolomite powders and application to azo-dye adsorption. Powder Technology. 201:277-282. https://doi.org/10.1016/j.powtec.2010.04.013
  3. Amine, K., M. Reda, K. Noreddine, M.K. Kheira, and S. Jacques. 2006. Removal of pentachlorophenol from aqueous solutions by dolomitic sorbents. Journal of Colloid and Interface Sci. 297:45-53. https://doi.org/10.1016/j.jcis.2005.10.030
  4. Choo, C.H. and I.H. Sung. 1999. A Comparative Study on Adsorption Behavior of Heavy Metal Elements onto Soil Minerals. J. KoSES. 4:57-68.
  5. Dermatas, D. and X. Meng. 2003. Utilization of fly ash for stabilization /solidification of heavy metal contaminated soils. Enging. Geol.. 70:377-394. https://doi.org/10.1016/S0013-7952(03)00105-4
  6. Meers, E., A. Ruttens, M.J. Hopgood, D. Samson, and F.M.G. Tack. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere. 58:1011-1022. https://doi.org/10.1016/j.chemosphere.2004.09.047
  7. EPA ASTM D 6276-99. 2006. Standard Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization.
  8. Franchi A. and A.P. Davis. 1997 Desorption of cadmium (II) from artificially contaminated sediments. Water, Air, and Soil Pollution. 100:181-196. https://doi.org/10.1023/A:1018392022843
  9. Ha, D.Y., S.H. Moon, and Y.J. Lee. 2004. Effect of pH, Humic Acid and Metal Concentration on Adsorption of Pb, Hg and Cd in the Soil. J. Waste Management. 2:534-544.
  10. Jung, G.B., W.I. Kim, J.S. Lee, J.D. Shin, J.H. Kim, and J.T. Lee. 2006. Availability of Heavy Metals in Soil and Their Translocation to Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex. Korea J. Environ. Agric.. 25(4):323-330. https://doi.org/10.5338/KJEA.2006.25.4.323
  11. Jung, M.C. 2005. Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone. J. Soil and Groundwater Env.. 10(3):16-23.
  12. Jo, T.S., O.K. Lee, J.W. Choi, and J.K. Byun. 2008. Adsorption of Cadmium Ion by Wood Charcoal Prepared with Red oak. Journal of Civil Engineers. 36:93-100.
  13. Kang, H., S.M. Park, Y.D. Jang, and J.J. Kim. 2008. Studies on Adsorption of Heavy Metals with Zeolite and Bentonite. J. Miner. Soc. Korea. 21:45-56.
  14. Kim, K.J. and J.W. Kim. 1981. A Study on the Use of Dolomite as a Water Treatment Aid. Journal of Civil Engineers. 29(3):145-152.
  15. Kim, M.K., W.I. Kim, G.B. Jeong, G.R. Park, S.G. Yun, and G.C. Eom. 2004. Effects of Lime and Humic Acid on the Cadmium Availability and its Uptake by Rice in Paddy Soils. Korea J. Environ. Agric.. 23:28-33. https://doi.org/10.5338/KJEA.2004.23.1.028
  16. Kim, R.Y., J.K. Sung, J.Y. Lee, Y.J. Lee, S.J. Jung, J.S. Lee, and B.C. Jang. 2010. Accumulation, Mobility, and Availability of Copper and Zinc in Plastic Film House Soils Using Speciation Analysis. korean J. Soil Sci. Fert.. 43(6):937-944.
  17. Kim, S.J., T.W. Kim, P.J. Kim, H.M. Roh, M. Park, C.W. Park, D.M. Sa, Y.K. Son, Y.S. Ok, W.G. Jeong, Y.S. Jeong, J.H. Joo, K.H. Han, S.H. Hyun, H.N. Hyun, and S.D. Hong. 2011. Elements of The Nature and Properties of Soils. Kyobo. 315-335.
  18. Kim, S.J., J.E. Yang, and S.E. Oh. 2007. Kinetics of Metolachlor Degradation by Zerovalent Iron. Korea J. Environ. Agric.. 26(1):55-61. https://doi.org/10.5338/KJEA.2007.26.1.055
  19. Kim, T.H. 2010. Efficiency of Chemical Remediation Technology and Stabilization Mechanism in Heavy Metal Contaminated Soil. Master Thesis, Kangwon National University. Chunchon, Korea.
  20. Kim, W.I., J.J. Kim, J.H. Yoo, J.Y. Kim, J.H. Lee, M.K. Paik, R.Y. Kim, and G.J. Im. 2010. Arsenic Fractionation and Bioavailability in Paddy Soils Near Closed Mines in Korea. korean J. Soil Sci. Fert.. 43(6):917-922.
  21. Lee, H.K., H.S. Jin, I.S. Hwang, and J.Y. Park. 2002. Prediction of Leaching Behavior of Steel Slag Using a Chemical Equilibrium Model. Journal of Waste Management. 19:79-87.
  22. Lee, Y.H., S.T. Lee, J.Y, Heo, M.G. Kim, K.P. Hong, E.S. Kim, Song, W.D., Roh, C.W., Lee, J.H., Jeon, W.T., and Ko, B.G. 2010. Monitoring of Heavy Metal Contents from Paddy Soil in Gyeongnam Province. korean J. Soil Sci. Fert.. 43(3):289-295.
  23. Lim, S.K., C.Y. Chung, Y.S. Ok, and J.G. Kim. 2002. Competitive Adsorption of Cd and Cu on Surface of Humic Acid Extracted from Peat. korean J. Soil Sci. Fert.. 35:344-351.
  24. Lim, J.E., D.H. Moon, D.J. Kim, O.K. Kwon, J.E. Yang, and Y.S. Ok. 2009. Evaluation of the Feasibility of Oyster-Shell and Eggshell Wastes for Stabilization of Arsenic-Contaminated Soil. Environ. Eng. Res.. 31:1095-1104.
  25. Ministry of Environment. 2002. The Korean standard method of environmental pollutions for soil pollution.
  26. Moon, D.H., K.H. Cheong, T.S. Kim, J.H. Kim, S.B. Choi, Y.S. Ok, and O.R. Moon. 2010. Stabilization of Pb Contaminated Army Firing Range Soil using Calcined Waste Oyster Shells. Environ. Eng. Res.. 32:185-192.
  27. Moon, Y.H., Y.G. Song, H.S. Moon, and Y.S. Zhang. 2010. Mobility of Metals in Tailings using a Column Experiment from the Guryong Copper Mine. korean J. Soil Sci. Fert.. 43(3):275-282.
  28. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  29. Nriagu J.O. and J.M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soil by trace metal. Nature. 333:134-139. https://doi.org/10.1038/333134a0
  30. Pickering W.F. 1982. Extraction of copper, lead, zinc or cadmium ions sorbed on calcium carbonate. Water, Air and Soil Pollution. 20:299-309.
  31. ROB, N., J. Comans, and J. Middelburg. 1987. Sorption of trace metals on calcite: Applicability of the surface precipitation model. Geochtmlcon Cosmochrmrca Acfa. 51:2587-2591.
  32. Skoog D.A. and J.J. Leary. 1991. Principles of instrumental analysis. Saunders College Publishing. 357-400.
  33. Song, H.K. 2004. Immobilization of Cadmium in the Paddy Soils Using the Chemical Remedial Agents. Master Thesis, Kangwon National University. Chunchon, Korea.
  34. Um, T.H. and Y.T. Kim. 2003. Stabilization Behavior of Heavy Metal ions by Treatment Conditions. J. Ceramic. 40(6):583-588.
  35. US EPA. 2007. The Use of Soil Amendments for Remedation, Revitalization, and Reuse. Solid Waste and Emergency Response. 5203.
  36. Yang, J.E., D.S. Park, and D.S. Han. 1995. Comparative Assessment of the Half-lives of Benfuresate and Oxolinic Acid Estimated from Kinetic Models Under Field Soil Conditions. Korea J. Environ. Agric.. 14(3):302-311.

Cited by

  1. Change of Bioavailability in Heavy Metal Contaminated Soil by Chemical Amendment vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.973
  2. Remediation of Heavy Metal Polluted Agricultural Field with Spent Mushroom Media vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.066
  3. Determining Heavy Metal (loid) Stabilization Materials and Optimum Mixing Ratio: Aqueous Batch test vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.540
  4. Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils vol.33, pp.1, 2014, https://doi.org/10.5338/KJEA.2014.33.1.1
  5. The Effects of the Short-term Cultivation and Incorporation of Legume Green Manures on the Chemical Properties of Soil Contaminated with Heavy Metals vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.155
  6. Assessment of Heavy Metal (loid) Pollution Using Pollution Index in Agricultural Field Adjacent to Industrial Area vol.49, pp.6, 2016, https://doi.org/10.7745/KJSSF.2016.49.6.768
  7. Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.064
  8. Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.075
  9. In situ reclamation of closed coal mine waste in Korea using coal ash vol.60, pp.3, 2017, https://doi.org/10.1007/s13765-017-0275-y
  10. Assessment of Stabilization/Solidification for Residue and Water Treatment Sludge from Extraction Process of Rare Earth Elements vol.54, pp.2, 2017, https://doi.org/10.12972/ksmer.2017.54.2.91