• Title/Summary/Keyword: iron mine

Search Result 183, Processing Time 0.026 seconds

A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase (석탄광산배수슬러지를 이용한 액상상태의 비소제거 흡착특성 및 반응속도에 관한 연구)

  • Lee, Se-Ban;Cui, Ming-Can;Jang, Min;Moon, Deok-Hyun;Cho, Yun-Chul;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.241-249
    • /
    • 2011
  • In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

Effects of Contamination Source and Particle Size on Arsenic Speciation and Bioaccessibility in Soils (오염원에 따른 토양 입경 별 비소의 오염특성 및 생물학적 접근성 평가)

  • Kwon, Ye-Seul;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.89-97
    • /
    • 2017
  • In this study, we evaluated effect of particle size on arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from smelting and mining. Soils were partitioned into six particle size fractions ($2000-500{\mu}m$, $500-250{\mu}m$, $250-150{\mu}m$, $150-75{\mu}m$, $75-38{\mu}m$, <$38{\mu}m$), and arsenic solid-state speciation and bioaccessibility were characterized in each particle size fraction. Arsenic solid-state speciation was characterized via sequential extraction and XRD analysis, and arsenic bioaccessibility was evaluated by SBRC (Solubility Bioaccessibility Research Consortium) method. In smelter site soil, arsenic was mainly present as arsenic bound to amorphous iron oxides. Fine particle size fractions showed higher arsenic concentration, but lower arsenic bioaccessibility. On the other hand, arsenic in mine site soil showed highest concentration in largest particle size fraction ($2000-500{\mu}m$), while higher bioaccessibility was observed in smaller particle size fractions. Arsenic in mine site soil was mainly present as arsenolite ($As_2O_3$) phase, which seemed to affect the distribution of arsenic and arsenic bioaccessibility in different particle size fractions of the mine soil.

Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment (안정화 처리된 비소오염토양의 용출특성)

  • Yu, Chan;Park, Jin-Chul;Yoon, Sung-Wook;Baek, Seungh-Wan;Lee, Jung-Hun;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

Mineralogical Study of Chondrodite in Iron Ores from the Wondong Mine, Korea (원동광산의 철광석에 수반되는 콘드로다이트에 대한 광물학적 연구)

  • 김수진;노진화;이영락
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1988
  • Chondrodite form the Wondong mine, Korea, which is the first occurrence from the southern Korea, has been studied for its mineralogical characterization. It occurs in close association with penninite, phlogopite, diopside and garnet within the magnetite ore bodies, which are debeloped along the contact of the Hwajeol Formation and rhyolite. Two kinds of chondrodites are recognized by their different optical properties; the high birefringent untwinned one and the low birefringent twinned one. The former has slightly higher Mn content than the latter. Twinning in chondrodite has been formed in close relation to substitution Mg (Fe, Mn) in the humite solid solution, as evidenced by the chemical variation across the twin lamallae.

  • PDF

Immobilization of Arsenic in Tailing using the Hydmgen-Peroxide (과산화수소를 이용한 광미중 비소의 불용화)

  • 정익재;최용수;박흥목
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.67-75
    • /
    • 1999
  • It is difficult to remedy tailings and soils including arsenic because arsenic compounds show anionic behaviour in natural condition and have chemical diversity by Eh/pH. This study was carried out to develop immobilization method of arsenic and iron in tailings and soils into ferric arsenate using hydrogen peroxide. According to experimental results, concentrations of arsenic and iron extracted from tailing of closed Gubong mine were reduced up to 84% and 93%, respectively. in this experiment. arsenic concentration decreased with an increase of hydrogen peroxide dosage. It was also showed that only 10% of arsenic and 20% of iron were extracted from the re-extraction experiments. Therefore, soil and tailing remedied by this method will be able to maintain long-time stability.

  • PDF

Optimization of Cu, Hg and Cd removal by Enterobacter cloacae by ferric ammonium citrate precipitation

  • Singh, Rashmi R.;Tipre, Devayani R.;Dave, Shailesh R.
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.283-292
    • /
    • 2014
  • Iron precipitating organisms play a significant role in the formation of ferric hydroxide precipitate, which acts as strong adsorbent for toxic metal. In this respect four different iron precipitating cultures were isolated from Hutti gold mine surface winze water sample on citrate agar medium. The best isolate was screened out for metal removal study on the basis of fast visual iron precipitation. The selected isolate was identified as Enterobacter sp. based on routine biochemical tests and Biolog GN microplate results and as Enterobacter cloacae subsp. dissolvens by 16S rRNA gene sequence analysis (GenBank accession number EU429448). Influence of medium composition, medium initial pH, the influence of inoculum size, effect of various media and ferric ammonium citrate concentration were studied on metal removal in shake flask experiments. Under the optimized conditions studied, E. cloacae showed $94{\pm}2$, $95{\pm}2$ and $70{\pm}2%$ of cadmium, copper and mercury removal from a simulated waste in shake flask studies. In lab scale column reactor more than 85% of copper and mercury removal was achieved.

A Study on the Application of Drone Based Aeromagnetic Survey System to Iron Mine Site (드론 기반 항공자력탐사 시스템을 이용한 철광산 탐사 적용성 연구)

  • Min, Dongmin;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • The system of magnetic exploration with a drone flight was constructed and applied to the iron mine site. The magnetic probe system installed on the drone used a sensor as Bartington's fluxgate type magnetometer, Mag639 and the A/D converter to collect magnetic intensity values on the tablet PC. The drone flight control module is a highly expandable Pixhawk with allowing 15 minutes of flight by loading 3kg. Experiments on the magnetic field interference range were performed to remove the erroneous effect from the drone with applying RTK GPS to obtain the magnetic intensity value at the accurate position. The accurate location information enabled to obtain the gradient measurement of magnetic field by measuring twice at different altitudes. Also, by using the terrain information, we could eliminate the terrain effect by setting the flight path to fly along the terrain. These results are in line with the field experiments using the nuclear proton magnetometer G-858 of Geometrics Co., Ltd, which adds to the reliability of the drone based aeromagnetic survey system we constructed.

Geochemistry of Stream Water around the Abandoned Boeun Coal Mine, Hoenam Area (보은제일폐탄광 주변 하천수의 지구화학적 특징)

  • Jeon, Seo-Ryeong;Shin, Ik-Jong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Stream water chemistry in the abandoned Boeun Jeil coal mine area was studied for a period of 3 months, including rainy and dry season. The stream waters were a nearly neutral and slightly alkali condition, and $Mg-SO_4$ type with Mg>Ca>Na>K and $SO_4>HCO_3>Cl>NO_3$. Chemical composition of the stream water was quite irregular during the experimental period. Concentrations of Na, K, $HCO_3$, U, Sr, and Cr decreased by $10{\sim}30%$ during rainy season, caused by dilution effects with rain. The concentration of Ca, Mg, $NO_3$, Cd, and Co increased during the rainy season, caused by more easily dissolved from bedrocks or mine drainage with slightly acidic condition than dry season. The stream water was enriched in Mg, Ca, $HCO_3$, $SO_4$, Al, Fe, Zn, Ni, Co, Cr, Cd, Sr and U. Concentrations of Na, Mg, Ca, $SO_4$, $HCO_3$, Fe, Zn, Ni, Sr, and U decreased linearly with distance from the mine adit. These elements were strongly controlled by dilution of unpolluted water influx and/or adsorption on the clay minerals and iron oxyhydroxide precipitates. This mine area exhibited two main weathering processes ; 1) oxidation with acidification derived from Fe sulphides, and 2) pH buffering due to Ca and Mg carbonate dissolution. This weathering processes were followed by adsorption of metals on iron oxyhydroxides and precipitation.

  • PDF

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.