• Title/Summary/Keyword: iron electrolysis

Search Result 32, Processing Time 0.024 seconds

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

Parameter Optimization for Cost Reduction of Microbubble Generation by Electrolysis

  • Lucero, Arpon Jr;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • To lower the operational cost of microbubble generation by electrolysis, optimization of parameters limiting the process must be carried out for the process to be fully adopted in environmental and industrial settings. In this study, four test electrodes were used namely aluminum, iron, stainless steel, and Dimensionally Sable Anode (DSA). We identified the effects and optimized each operational parameter including NaCl concentration, current density, pH, and electrode distance to reduce the operational cost of microbubble generation. The experimental results showed that was directly related to the rate and cost of microbubble generation. Adding NaCl and narrowing the distance between electrodes caused no substantial changes to the generation rate but greatly decreased the power requirement of the process, thus reducing operational cost. Moreover, comparison among the four electrodes operating under optimum conditions revealed that aluminum was the most efficient electrode in terms of generation rate and operational cost. This study therefore presents significant data on performing costefficient microbubble generation, which can be used in various environmental and industrial applications.

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Removal of Rhodamine B using Electrocoagulation Process (전기응집 공정을 이용한 Rhodamine B의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1081-1088
    • /
    • 2009
  • The performance of a electrocoagulation (EC) process was examined for the removal of Rhodamine B (RhB) using iron electrode. The effects of operational parameters such as electrode material (aluminum and iron), current density, NaCl dosage, intial pH and initial dye concentration on RhB removal efficiency were investigated. The optimum range for each of these operating variables were experimentally determined. The experimental results showed that the iron is superior to aluminum as sacrificial electrode material. The optimum time of electrolysis, current density, NaCl dosage and pH were 10 min, 1630 A/$m^2$, 4 g/L and neutral pH, respectively. Under these conditions, RhB was effectively removed (> 93.4%) and also more than 80% of COD was removed (> 88.9%) when the initial concentration of RhB was 230 mg/L. The electrical energy consumption in the above conditions for the color and COD of RhB removal were 10.3 and 10.8 kWh/kg RhB, respectively. The electrocoagulation process could be a promising technology to treat dye wastewater containing RhB.

Removal of Nitrate in Groundwater by Bipolar ZVI Packed Bed Electrolytic Cell at Field Pilot (지하수중의 질산성질소 제거를 위한 영가철 충진 복극전해조의 현장적용에 관한 연구)

  • Na, So-Jeong;Jeong, Joo-Young;Kim, Han-Ki;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.989-994
    • /
    • 2011
  • Nitrate contamination of groundwater is a common problem throughout intensive agriculture areas (non-point source pollution). Current processes (e.g. ion exchange and membrane separation) for nitrate removal have various disadvantages. The objective of this study was to evaluate electrochemical method such as electroreduction using bipolar ZVI packed bed electrolytic cell to remove nitrate from groundwater at field pilot. In addition ammonia stripping tower continuously removed up to 77.0% of ammonia. Bipolar ZVI packed bed electrolytic cell also removed E.coli. In the field pilot experiment for groundwater in 'I' city (average nitrate 30~35 mg N/L, pH 6.4), maximum 99.9% removal of nitrate was achieved in the applied 600 V.

A Study on the Electrolytic Process for Palladium Separation from Recovered Crude Metal of Electronic Waste (전자폐기물에서 회수된 조금속으로부터 팔라듐 분리를 위한 전해공정에 관한 연구)

  • Park, Sung Cheol;Han, Chul Woong;Kim, Yong Hwan;Jung, Yeon Jae;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.76-82
    • /
    • 2021
  • The separation of palladium from crude metal, which is obtained from electronic waste using pyrometallurgy was achieved through electrolysis. This was done to recover high-purity copper. The oxidation potentials of these metals are a fundamental part of the analysis of electrolytic separation of palladium and impurity metals. To achieve this, copper, iron, and nickel were dissolved in the electrolyte, and palladium and aluminum were found to be recoverable from anode slime. During the electrolysis for palladium separation, palladium was present in the anode slime and was obtained with a recovery of 97.46 % indicating almost no loss. 4N-grade copper was recovered from the electrodeposition layer at the cathode.

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

Optimization of Electrolysis Using Sacrificial Electrode for the Treatment of Electroless Nickel Plating Wastewater (희생전극을 이용한 무전해 니켈 도금 폐수의 전기분해처리 최적화)

  • Kim, Young-Shin;Jeon, Byeong-Han;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.204-209
    • /
    • 2015
  • The effluent limit of nickel from electroplating wastewater has been strengthened from 5 mg/L to 3 mg/L from 2014. However, currently applied treatment process for nickel plating wastewater is unable to meet the effluent limit, most of the treatment concept conducted by treatment plant is dilution with other metal bearing wastewater. This can cause very significant impact to the environment of nickel contamination. With this connection, the feasibility test has been conducted with the use of electrolysis by using sacrificial electrodes. Experiments were conducted in synthetic and electroless nickel plating wastewater. Optimal condition of current density, pH were derived from the synthetic wastewater. It was found that the removal efficiency of nickel exceeded 94% at the operation condition of at pH 9 and the current density of $1{\sim}2mA/cm^2$. At this conditions, the iron sludge was generated very low amount. However, it was unsuccessful to meet the effluent limit by applying these treatment conditions to the real electroplating wastewater. This can be explained due to the matrix effect of other metals and anions contained real electroplating wastewater. From the result of further study, the optimal conditions for the real wastewater treatment were found out to be at pH 9, current density $6{\sim}7mA/cm^2$, for 5 minutes of operating time. At these conditions, 88% removal of nickel was achieved, which results the residual nickel concentration was below 3 mg/L.

Electrowinning of Tungsten From Fused Bath Composed of Calcium Chloride, Calcium Oxide and Tungstic Oxide (텅그스텐의 熔融鹽電解)

  • Kim, Jae-Won;Lee, Dong-Nyung
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.32-42
    • /
    • 1966
  • The electrolysis of tungstic oxide dissolved in the bath of calcium chloride and calcium oxide was studied to produce metallic tungsten using carbon as anode and iron as cathode in the temperature range of 900^{\circ}$ to $1200^{\circ}C$. The binary phase diagrams $CaCl_2$-CaO and $CaCl_2-CaWO_4$ systems were constructed to determine the suitability of bath composition and the range of temperatures for the electrolysis. As $WO_3$ reacted with $CaCl_2$ to form oxychloride in the fused salt, the addition of the proper amount of CaO was necessary to avoid the loss of $WO_3$. The optimum compositions of fused bath were $CaCl_2$ 100 parts, CaO and $WO_3$ each 10 to 20 parts, with the CaO, $WO_3$ ratio greater than unity, to keep freezing point low and to prevent the vaporization of $CaCl_2$. The observed decomposition voltage at which $WO_3$ decomposes to W and CO was-0.1 volt, whereas the calculated was -0.3 volt. Metallic tungsten deposited at the cathode reacted easily with CO formed secondarily at the anode surface, to form WC below $1050^{\circ}C$, so that the cell temperature should be above $1050^{\circ}C$. The effects of cathode current densities on current efficiency were minor in the range of 1 to 5 $amp/cm^2$.

  • PDF

A Study on the Treatment of soil Flushing Effluent Using Electrofloatation (전기부상법을 이용한 토양세정 유출수 처리에 관한 연구)

  • 소정현;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 2002
  • The optimal operation conditions, including voltage applied, reaction time, distance between electrodes. and electrode material. were investigated for the treatment of soil flushing effluent using electrofloatation. When 3V was applied for 1 hour, 88% oil-water separation efficiency was achieved. In case of 6V and above, 90% efficiencies were achieved. As reaction time and distance between electrodes were longer, separation efficiencies were higher and lower, respectively. Separation efficiencies for different anode materials were copper > aluminum > iron > titanium. It might result from the differences of their electrical conductivities.