• Title/Summary/Keyword: iron corrosion

Search Result 352, Processing Time 0.024 seconds

Ultrasonic characterization of exhumed cast iron water pipes

  • Groves, Paul;Cascante, Giovanni;Knight, Mark
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.241-262
    • /
    • 2011
  • Cast iron pipe has been used as a water distribution technology in North America since the early nineteenth century. The first cast iron pipes were made of grey cast iron which was succeeded by ductile iron as a pipe material in the 1940s. These different iron alloys have significantly different microstructures which give rise to distinct mechanical properties. Insight into the non-destructive structural condition assessment of aging pipes can be advantageous in developing mitigation strategies for pipe failures. This paper examines the relationship between the small-strain and large-strain properties of exhumed cast iron water pipes. Nondestructive and destructive testing programs were performed on eight pipes varying in age from 40 to 130 years. The experimental program included microstructure evaluation and ultrasonic, tensile, and flexural testing. New applications of frequency domain analysis techniques including Fourier and wavelet transforms of ultrasonic pulse velocity measurements are presented. A low correlation between wave propagation and large-strain measurements was observed. However, the wave velocities were consistently different between ductile and grey cast iron pipes (14% to 18% difference); the ductile iron pipes showed the smaller variation in wave velocities. Thus, the variation of elastic properties for ductile iron was not enough to define a linear correlation because all the measurements were practically concentrated in single cluster of points. The cross-sectional areas of the specimens tested varied as a result of minor manufacturing defects and levels of corrosion. These variations affect the large strain testing results; but, surface defects have limited effect on wave velocities and may also contribute to the low correlations observed. Lamb waves are typically not considered in the evaluation of ultrasonic pulse velocity. However, Lamb waves were found to contribute significantly to the frequency content of the ultrasonic signals possibly resulting in the poor correlations observed. Therefore, correlations between wave velocities and large strain properties obtained using specimens manufactured in the laboratory must be used with caution in the condition assessment of aged water pipes especially for grey cast iron pipes.

Corrosion characterization of Fe-aluminide alloys with various sulphuric acid solution ($H_2SO_4$ 수용액 변화에 따른 철 알루미나이드 합금의 부식특성)

  • Lee, B.W.;Choi, H.L.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Corrosion characterization of Fe-XAl-0.3Y(X=5, 10, 14 wt%) alloys in $0.1{\sim}1N$ sulphuric acid at room temperature was studied using potentiodynamic techniques. The morphology and components of corrosion products on surface of Fe-aluminide alloys were investigated using SEM/EDX, XRD. The potentiodynamic polarization curve of alloys exhibited typical active, passive, transpassive behaviour. Corrosion potential($E_{corr}$) and corrosion current density($I_{corr}$) values of Fe-XAl-0.3Y alloys followed linear rate law. $E_{corr}$ of 10Al alloy and 14Al alloy was ten times lower than 5Al alloy. Icorr of 14Al alloy was five times lower than 5Al alloy. The passive film on the surface of Fe-5Al-0.3Y alloy was formed iron oxide. Fe-10Al-0.3Y and Fe-14Al-0.3Y alloys passive films were aluminium oxide. especially, Fe-14Al-0.3Y alloy showed good corrosion resistance in $0.1{\sim}1N$ sulphuric acid. This is attributed to the forming of protective $Al_2O_3$ oxide on the surface of Fe-14Al-0.3Y alloy.

  • PDF

Self-healing Anticorrosion Coatings for Gas Pipelines and Storage Tanks

  • Luckachan, G.E.;Mittal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.209-216
    • /
    • 2016
  • In the present study, chitosan based self-healing anticorrosion coatings were prepared by layer by layer (lbl) addition of chitosan (Ch) and polyvinyl butyral (PVB) on mild carbon steel substrate. Chitosan coatings exhibited enhanced coating stability and corrosion resistance in aggressive environments by the application of a PVB top layer. Chitosan layer in the lbl coatings have been modified by using glutaraldehyde (Glu) and silica ($SiO_2$). Performance of different coatings was tested using electrochemical impedance spectroscopy and immersion test. The best anticorrosion performance was observed in case of 10 % Ch_$SiO_2$_PVB coatings, which withstand immersion test over 25 days in 0.5 M salt solution without visible corrosion. 10 % Ch_$SiO_2$ coatings without the PVB top layer didn't last more than 3days. Application of PVB top layer sealed the defects in the chitosan pre-layer and improved its hydrophobic nature as well. Raman spectra and SEM of steel surfaces after corrosion study and removal of PVB_Ch/Glu_PVB coatings showed a passive layer of iron oxide, attributing to the self-healing nature of these coatings. Conducting particle like graphene reinforcement of chitosan in the lbl coatings enhanced corrosion resistance of chitosan coatings.

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

Anti-Corrosion Characteristics of Steel Structures with Polyaniline Anti-Corrosive Coatings (강 구조물에 대한 폴리아닐린 함유도료의 방청특성)

  • Song, Min-Kyung;Kong, Seung-Dae;Oh, Eun-Ha;Yoon, Hun-Cheol;Kim, Yoon-Shin;Im, Ho-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.236-246
    • /
    • 2010
  • In preparative anti-corrosive coating experiments, polyaniline was obtained by reacting an oxidizing agent with the monomer aniline. Further, the primer coating was prepared using a variety of widely-used materials such as urethane resin. For the top coating, epoxy resin and acrylic urethane resin were used. Characteristics of the coatings were assessed according to KS and ASTM specifications, and the structure of the polyaniline was characterized using FT-IR and TGA. For analysis of anti-corrosive properties in salt-spray experiments, measurements of the oxidation state of iron and surface atomic analysis were conducted using XPS and SEM-EDX. Unlike general anti-corrosive coatings which exhibit anti-corrosive effects only as a primer coating, the anti-corrosive coatings using polyaniline as the anti-corrosive pigment showed a marked synergistic effect with the top coatings. In other words, the top coatings not only produce a fine view effect, but also increase, through interaction with the primer coatings, the resistance to diffusion of corrosive factors from the external environment. It was also found that, unlike the heavy metal oxide-forming layer of the passive barrier alone, the polyaniline anti-corrosive pigment oxidized iron at the interface with the iron substrate to form a passive barrier in the oxidic layer, and itself formed a potential barrier layer with anti-corrosive factors from the external environment. Although the passive layer was damaged, the damaged area did not become completely oxidized iron; on the contrary, it showed a tendency to reduction. This can be interpreted such that a passive layer is formed again on the damaged area, and that at the same time there is a tendency to self-healing.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine (유동가속부식에 영향을 미치는 수화학 인자 : pH, 용존산소, 하이드라진)

  • Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.280-287
    • /
    • 2013
  • Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine.

Corrosion Behavior of Boiler Tube under Circulation Water Conditions in District Heating System (지역난방 시스템의 순환수에 따른 보일러 튜브의 부식 특성)

  • Hong, Minki;Cho, Jeongmin;Song, Min Ji;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.287-291
    • /
    • 2018
  • In this study, corrosion behavior of a SA178-A alloy used in the boiler tube of a district heating system was investigated in different environments where it was exposed to pure water, district heating (DH) water, and filtered district heating (FDH) water. After the corrosion test, the surface morphology was examined for observation of the number of pitting sites and pitting area fraction, using a scanning electron microscope. The DH water and FDH water conditions resulted in a lower corrosion potential and pitting potential, and revealed a significantly higher corrosion rate than the pure water condition. The pitting sites in the DH water (pH 9.6) were approximately eighteen times larger than those in the pure water (pH 9.6). Compared to the DH water, the corrosion potential became more noble in the FDH water condition, where iron ions were reduced through filtration. However, the corrosion rate increased in the FDH water due to an increased concentration of chloride ions, which deteriorated the stability of passive film.

Development of a Blended Corrosion, Scale and Micro-Organism Inhibitor for Open Recirculating Cooling System

  • Choi, Dong-Jin;You, Seung-Jae;Kim, Jung-Gu;Hwang, Woo-Suk
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.89-94
    • /
    • 2005
  • This paper presents the results of a study that was undertaken to optimize the ratio of the components of a new multi-component inhibitor blend composed of orthophosphate/ phosphonates/ acrylate copolymer/ isothiazolone. The effects of newly developed inhibitor on carbon steel dissolution in synthetic cooling water were studied through weight loss tests, electrochemical tests, scale tests, and micro-organism tests. The obtained results were compared to blank (uninhibited specimen) and showed that developed inhibitor revealed very good corrosion, scale, and micro-organism inhibition simultaneously. All measurements indicated that the efficiency of the blended mixture exceeded 90 %. The inhibitive effects arose from formation of protective films which might contain calcium phosphate, calcium phosphonate, and iron oxide. The nature of protective films formed on the carbon steel was studied by scanning electron microscopy (SEM) and auger electron spe ctroscopy (AES). Inhibitor used in this study appeared to have better performance for scale inhibition due to their superior crystal modification effect and excellent calcium carbonate scale inhibition properties. The effect of inhibitor on microorganisms was evaluated through minimum inhibitory concentration (MIC) test. All kinds of micro-organisms used in this study were inhibited under 78ppm concentration of inhibitor.