• Title/Summary/Keyword: iron corrosion

Search Result 352, Processing Time 0.027 seconds

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY

  • Kim, Seung-Soo;Min, Jae-Ho;Baik, Min-Hoon;Kim, Gye-Nam;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.945-952
    • /
    • 2012
  • The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

A Study on the Stability of Using Alkali Solution Desalination on Gilt Plated Silver-Iron Artifacts (알칼리 수용액을 이용한 출토 철지금은장관정의 탈염처리 적용성 평가)

  • Park, Jun Hyeon;Bae, Go Woon;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.179-189
    • /
    • 2021
  • In this study, the research objects are gilt plated silver-iron nails excavated from the west of the tombs in Neungsan-ri, Buyeo. A gilt plated silver-iron nail was fabricated by combining silver and iron via heating and then gilding amalgam on top of this combination, demonstrating that this ancient artifact that can be replicated using current technology. Since the metal (Au, Ag) surface of these gilt plated artifacts are covered with iron oxide, which slips into the cracks and scratches of the artifacts as well, desalination is essential. Based on the results of the preliminary experiment, the research objects were classified into grades A, B, and C, according to the degree of corrosion and then desalinated using an alkali solution (NaOH, Sodium Sesquicarbonate of 0.1 M) at 60℃. The results demonstrate that the more serious is the degree of corrosion, the more is the amount of Cl- detected. Further, more Cl- was released when NaOH was used than when sodium sesquicarbonate was used, for all grades except Grade A. Furthermore, the more serious is the degree of corrosion, the longer is the desalination period and the reaction with NaOH for all grades except Grade A. A comparison of the Fe composition of the surface before and after desalination shows that Fe composition is the use of NaOH resulted in a smaller increase compared with the use of sodium sesquicarbonate, for all grades except Grade B. However, four of the nails were damaged owing to NaOH (Grade B 3ea, Grade C 1ea) during desalination. Thus, Cl- ions are more stably released when sodium sesquicarbonate is used than when NaOH is used.

The metal corrosion caused by museum indoor air pollutants (박물관 실내 대기오염물질에 의한 금속 부식 영향)

  • Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.5-14
    • /
    • 2008
  • The effect of air pollutants coming from internal museum materials such as wood-based products and cements on metal corrosion have been investigated. The Oddy test and the Chamber test was employed as a corrosion test. The metal pieces after the Oddy test had different corrosion types caused by the internal museum materials. The most effective wood based product was 18T HS(E0) and 9mm plywood(F0,E0). Iron(Fe) and copper(Cu) also bronze of the Chamber test had corrosion caused by Formic acid, Acetic acid, and Acetaldehyde. The packing materials in high humidity had caused more corrosion on the surface of the metal pieces than in low humidity.

  • PDF

EVALUATION OF PH CONTROL AGENTS INFLUENCING ON CORROSION OF CARBON STEEL IN SECONDARY WATER CHEMISTRY CONDITION OF PRESSURIZED WATER REACTOR

  • Rhee, In Hyoung;Jung, Hyunjun;Cho, Daechul
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.431-438
    • /
    • 2014
  • The effect of various pH agents on the corrosion behavior of carbon steel was investigated under a simulated secondary water chemistry condition of a pressurized water reactor (PWR) in a laboratory, and the steel's corrosion performance was compared with the field data obtained from Uljin NPP unit 2 reactor. All tests were carried out at temperatures of $50^{\circ}C-250^{\circ}C$and pH of 8.5 - 10. The pH at a given temperature was controlled by adding different agents. Laboratory data indicate that the corrosion rate of carbon steel decreased as the pH increased under the test conditions and the highest corrosion rate was measured at $150^{\circ}C$. This high corrosion rate may be related to high dissolution and instability of Fe oxide ($Fe_3O_4$) at $150^{\circ}C$. It was also found that an addition of ethanolamine (ETA) to ammonia was more effectivefor anticorrosion than ammonia alone, and that mixed treatment reduced 50% of iron or more at pHs of 9.5 or higher, especially in the steam generator (SG) and the moisture separator & re-heater (MSR).

Corrosion Behaviour of DH36 Steel Used for Oil Platform in Splash Zones

  • Liu, J.G.;Li, Y.T.;Hou, B.R.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.190-194
    • /
    • 2015
  • The splash zone is the most corrosive area of the marine environment, and the corrosion of steel structures exposed in this area is a serious concern. DH36 steel is one of most commonly used steels for offshore oil platforms in China, and its corrosion behaviour in splash zones was studied in this paper. Polarization curves were obtained from the corroded steel exposed in this area while the morphologies and rusts of the rust steel were characterized using scanning electron microscopy and X-ray diffraction. Double rust layers were formed in the splash zone. The inner layer contained magnetite and fine flaky lepidocrocite, and the outer layer was composed of accumulated flaky lepidocrocite and a small amount of goethite. In the wet period, the iron dissolved and reacted with lepidocrocite, and magnetite appeared, while the magnetite was oxidized to lepidocrocite again during the dry period. Electrochemical reduction and chemical oxidization cycled in intermittent wetting and drying periods, and magnetite and lepidocrocite were involved in the reduction reaction, leading to serious corrosion.

Aluminizing and Corrosion of Carbon Steels in N2/0.5%H2S Gas at 650-850℃

  • Abro, Muhammad Ali;Lee, Dong Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.110-114
    • /
    • 2015
  • The effect of hot-dip aluminizing on the corrosion of the low carbon steel was studied at $650-850^{\circ}C$ for 20-50 h in $N_2/0.5%\;H_2S$ gas. The aluminized steel consisted primarily of the Al topcoat and the underlying Al-Fe alloy layer. Aluminizing drastically improved the corrosion resistance by forming the ${\alpha}-Al_2O_3$ surface scale. Without aluminizing, the steel formed nonadherent, fragile, thick scales, which consisted of FeS as the major phase and iron oxides such as FeO, $Fe_3O_4$ and $Fe_2O_3$ as minor ones.

Effects of Water Aggressivity on the Corrosion in Water Distribution Systems (물의 침식성이 수도관 부식에 미치는 영향)

  • Kwak, Phill Jae;Kim, Sun Il;Woo, Dal Sik;Nam, Sang Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.134-139
    • /
    • 1999
  • This study was conducted to determine the effects of water aggressivity on the corrosion in a recirculating pipe loop systems. As the pH was increased in the range of pH 6.0~8.5, water aggressivity was decreased. Zine and iron concentration of water adjusted by pH were lower than those of tap water and water adjusted by alkalinity and calcium hardness. The major elements of corrosion deposit analyzed by EDS(Energy Dispersion Spectrophotometer) were zinc and calcium. In conclusion, we suggest that in corrosion control practice in the water works industry, increasing the pH of the water can serve as a way of controlling the solubility of metal ions release from water distribution systems.

  • PDF

Characteristics of MR Polishing using Carbonyl Iron Particles Coated with Xanthan Gum (Xanthan Gum으로 코팅된 Carbonyl Iron Particle를 이용한 자기유변유체 연마특성에 관한 연구)

  • Lee, J.W.;Ha, S.J.;Shin, B.C.;Kim, D.W.;Cho, M.W.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2012
  • A polishing method using magnetorheological (MR) fluid has been developed as a new precision technique to obtain a fine surface. The process uses a MR fluid that consists of magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water and stabilizers. But the CI particles in MR fluids cause a severe corrosion problem. When coated with Xanthan gum, the CI particles showed long-term stability in corrosive aqueous environment. The surface roughness obtained from the MR polishing process was evaluated. A series of experiments were performed on fused silica glass using prepared slurries and various process conditions, including different polishing times. Outstanding surface roughness of Ra=2.27nm was obtained on the fused silica glass. The present polishing method could be used to produce ultra-precision micro parts.

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.