• Title/Summary/Keyword: ionospheric variations

Search Result 48, Processing Time 0.023 seconds

Study the effect of strong magnetic storm on the ionosphere of August 2003 in the China region

  • Debao, Wen;Yunbin, Yuan;Jikun, Ou;Xingliang, Huo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.191-193
    • /
    • 2006
  • The ionospheric strom evolution process was monitored during the 18 August 2003 magnetic strom over China, through inversion of the ionospheric electron density from GPS observations. The temporal and spatial variations of the ionosphere were analysed as a time series of ionospheric electron density profiles. Results show that the main ionospheric effects of the storm over China under consideration are: the positive storm phase effect usually happens in the low latitudinal ionospheric; the negative storm phase effect occurs in the middle latitude, and the equatorial anomaly structure can be found as well.

  • PDF

Connection between the Amplitude Variations of the GPS Radio Occultation Signals and Solar Activity

  • Pavelyev, A.G.;Liou, Y.A.;Wickert, J.;Pavelyev, A.A.
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.348-357
    • /
    • 2008
  • The classification of the effect of ionospheric disturbances on the radio occultation signal amplitude has been introduced based on an analysis of more than 2000 seances of radio occultation measurements per formed with the help of the CHAMP German satellite. The dependence of the histograms of variations in the radio occultation signal amplitude on the IMF variation index has been revealed. It has been indicated that it is possible to introduce the radio occultation index characterizing the relation between ionospheric disturbances and solar activity. An amplitude radio occultation (RO) method is proposed to study connection between the ionospheric and solar activity on a global scale. Sporadic amplitude scintillation observed in RO experiments contain important information concerning the seasonal, geographical, and temporal distributions of the ionospheric disturbances and depend on solar activity. The probability of strong RO amplitude variations (RO $S_4$ index greater than 0.2) in the CHAMP RO signals diminishes sharply with the weakening of solar activity from 2001 to 2008. The general number of RO events with strong amplitude variations can be used as an indicator of the ionospheric activity. We found that during 2001-2008 the daily globally averaged RO $S_{4a}$ index depends essentially on solar activity. The maximum occurred in January 2002, minimum has been observed in summer 2008. Different temporal behavoir of $S_{4a}$ index has been detected for polar (with latitude greater than $60^{\circ}$) and low latitude (moderate and equatorial) regions. For polar regions $S_{4a}$ index is slowly decreasing with solar activity. In the low latitude areas $S_{4a}$ index is sharply oscillating, depending on the solar ultraviolet emission variations. The different geographical behavoir of $S_{4a}$ index indicates different origin of ionospheric plasma disturbances in polar and low latitude areas. Origin of the plasma disturbances in the polar areas may be connected with influence of solar wind, the ultraviolet emission of the Sun may be the main cause of the ionospheric irregularities in the low latitude zone. Therefore, the $S_{4a}$ index of RO signal is important radio physical indicator of solar activity.

  • PDF

Ionospheric F2-Layer Variability in Mid Latitude Observed by Anyang Ionosonde

  • Kwak, Young-Sil;Kumar, Phani;Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Khan-Hyuk;Hong, Sun-Hak
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • The ionosphere displays variations on a wide variety of time-scales, ranging from few hours to days and up to solar cycles and even more. In this paper, we examine the ionospheric F2-layer variability in mid latitude by analyzing the foF2 and hmF2 from the Anyang ionosonde. Especially, we investigate how ionospheric semi-annual and seasonal anomalies vary with local time and solar activity. In addition to the characterization of the ionospheric semi-annual an seasonal anomalies, our study extends to the investigation of the relationship between ionospheric variability and geomagnetic activity. Finally we also discuss the coupling between ionospheric F2-layer variability and thermospheric neutral composition.

  • PDF

The height variation of F2 peak density using Anyang Ionosonde measurements for GNSS ionospheric model

  • Kim, Eo-Jin;Chung, Jong-Kyun;Kim, Yong-Ha;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.24.3-24.3
    • /
    • 2008
  • The signals transmitted from satellites of Global Navigation Satellite System (GNSS) interact with the plasma of the ionosphere. To study the impact of the ionospheric plasma on GNSS applications a comprehensive knowledge of the ionosphere is required. Especially the correct measurement of the ionosphere such as the peak height of the F2 layer peak electron density (hmF2) is important for the GNSS ionospheric model. Anyang ionosonde station ($37.39^{\circ}N$, $126.95^{\circ}E$) has been operating from October 2000 and the accumulated data for 8 years may allow us to obtain climatological characteristics of middle latitude ionospheric F region for GNSS application. We analyzed the variations of the hmF2 and NmF2 over Anyang station for different conditions of solar activity, geomagnetic activity, season, and local time, and we compared our results with the IRI model.

  • PDF

A Long-term Accuracy Analysis of the GPS Klobuchar Ionosphere Model (GPS Klobuchar 전리층 모델의 장기간 정확도 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • Global Positioning System (GPS) is currently widely used for aviation applications. Single-frequency GPS receivers are highly affected by the ionospheric delay error, and the ionospheric delay should be corrected for accurate positioning. Single-frequency GPS receivers use the Klobuchar model, whose model parameters are transmitted from GPS satellites. In this paper, the long-term accuracy of the Klobuchar model from 2002 to 2014 is analyzed. The IGS global ionosphere map is considered as true ionospheric delay, and hourly, seasonal, and geographical error variations are analyzed. Histogram of the ionospheric delay error is also analyzed. The influence of solar and geomagnetic activity on the Klobuchar model error is analyzed, and the Klobuchar model error is highly correlated with solar activity. The results show that the Klobuchar model estimates 8 total electron content unit (TECU) over the true ionosphere delay in average. The Klobuchar model error is greater than 12 TECU within $20^{\circ}$ latitude, and the error is less than 6 TECU at high latitude.

The Real-Time Determination of Ionospheric Delay Scale Factor for Low Earth Orbiting Satellites by using NeQuick G Model (NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • For ionospheric correction of low earth orbiter (LEO) satellites using single frequency global navigation satellite system (GNSS) receiver, ionospheric scale factor should be applied to the ground-based ionosphere model. The ionospheric scale factor can be calculated by using a NeQuick model, which provides a three-dimensional ionospheric distribution. In this study, the ionospheric scale factor is calculated by using NeQuick G model during 2015, and it is compared with the scale factor computed from the combination of LEO satellite measurements and international GNSS service (IGS) global ionosphere map (GIM). The accuracy of the ionospheric delay calculated by the NeQuick G model and IGS GIM with NeQuick G scale factor is analyzed. In addition, ionospheric delay errors calculated by the NeQuick G model and IGS GIM with the NeQuick G scale factor are compared. The ionospheric delay error variations along to latitude and solar activity are also analyzed. The mean ionospheric scale factor from the NeQuick G model is 0.269 in 2015. The ionospheric delay error of IGS GIM with NeQuick G scale factor is 23.7% less than that of NeQuick G model.

Combined GPS/GLONASS Relative Receiver DCB Estimation Using the LSQ Method and Ionospheric TEC Changes over South Korea

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The use of dual-frequency measurements from the Global Navigation Satellite System (GNSS) enables us to observe precise ionospheric total electron content (TEC). Currently, many GNSS reference stations in South Korea provide both GPS and GLONASS data. In the present study, we estimated the grid-based TEC values and relative receiver differential code biases (DCB) from a GNSS network operated by the Korea Astronomy and Space Science Institute. In addition, we compared the diurnal variations in a TEC time series from solutions of the GPS only, the GLONASS only, and combined GPS/GLONASS processing. A significant difference between the GPS only TEC and combined GPS/GLONASS TEC at a specific grid point over South Korea appeared near the solar terminator. It is noted that GLONASS measurements can contribute to observing a variation in ionospheric TEC over high latitude regions.

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung;Mende, Stephen B.;Eastes, Richard W.;Frey, Harald U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.87-98
    • /
    • 2022
  • The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.

Ionospheric Responses to the Earthquake in the Gulf of Alaska and the Kusatsu-Shiranesan Volcanic Eruption on 23 January 2018

  • Shahbazi, Anahita;Park, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Numerous research revealed a strong association between the ionospheric perturbations and various natural hazards. The ionospheric measurements from Global Navigation Satellite System (GNSS) observations provide the state of electron contents in the ionosphere that contributes to investigate the source events. In this study, two geophysical events occurred on 23 January 2018, the 7.9 Mw earthquake in Alaska and Kusatsu-Shiranesan volcanic eruption in Japan, are examined to characterize the fingerprint of each event in the ionosphere. Firstly, we extracted the Total Electron Content (TEC) from GNSS measurements, then isolated disturbed wave signatures from the TEC measurements that is referred to as a traveling ionospheric disturbance (TID). As TIDs are short-term ionospheric variations, the major trend of GNSS TEC measurements should be properly removed. We applied a natural neighbor interpolation method together with a leave-one-out cross validation technique for detrending. After detrending the TEC, the remaining signals are further enhanced by applying a band-pass filter and TIDs are detected from them. Finally, the detected TIDs are verified as the response of the ionosphere to Kusatsu-Shiranesan volcanic eruption and Gulf of Alaska earthquake which propagated through the ionosphere with an average velocity of 530 m/s and 724 m/s, respectively. In addition, a coherence analysis is conducted to discriminate between the signatures from a volcanic explosion and an earthquake. The analysis reveals the TID waveforms from each single event are highly correlated, while a low correlation is found between the TIDs from the earthquake and explosion. This study supports the claim that different geophysical events induce the distinctive characteristics of TIDs that are detectable by the ionospheric measurements of GNSS.