• Title/Summary/Keyword: ionic wind

Search Result 44, Processing Time 0.022 seconds

Investigation of the HV Ionic Wind Generator and the Control of Corona Discharge for Air-flow Formation (기류형성을 위한 고전압 이온풍 발생장치와 코로나 제어기술에 관한 기초적 연구)

  • Lee, B.H.;Eom, J.H.;Kang, S.M.;Chang, K.C.;Ahn, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1707-1709
    • /
    • 2002
  • Ionic wind may be produced by DC corona discharges. In this work, the electrical effect has studied to evaluate applicability in fields of electrostatic cooling, ozone generation, electrostatic precipitation, heat transfer, air flow modification, and etc. The ionic wind velocity was measured as a function of the distance of pin to plate and the diameter of punched hole. The pin to punched-plate electrode generates airflow from pin to plate and the flow direction is controlled by the hole size of punched-plate, input voltage and distance between two electrodes. As a consequence, the ionic wind velocity is nearly proportional to the applied voltages and ranges from 1 to 3 m/sec.

  • PDF

The Behavior of Particulate-Bound logic Components and Their Relationships with Meteorological Parameters: Air-Sea Geochemistry of Inorganic and Organic tons in Cheiu Island (이온성분의 환경거동과 기상인자와의 관계: 제주지역을 중심으로 한 유.무기성 이온성분의 대기-해양지화학)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.479-490
    • /
    • 1998
  • The concentrations of ten inorganic (sodium, chloride, sulfate, ammonia, etc.) and three organic (acetate, formate, and MSA) ions associated with airborne particulate matter were measured from Cheju Island, Korea during the three field intensive campaigns conducted in (1) Sept./oct. 1997 (fall), (2) Dec. 1997 (winter), and (3) April 1998 (spring). The results of our measurements indicated that the concentration levels of most ionic species were decreasing significantly across the three experimental periods. The patterns of concentration reduction were clear as the sum of all cation and anion species changed dramatically across those periods such as 294> 144 > 65 and 193 >96>74 nequiv/m3, respectively. The changes were best explained in terms of the wind rose patterns of the study site. Since our sampling spot is located on the western-end point of Cheju Island, it is likely to reflect the effects of diverse sources such as natural, marine processes during NW and local non-maritime ones during SE winds. .Hence, the periodical changes in ionic concentrations may be accounted for by the comparable changes in wind direction. To further investigate environmental characteristics of these ionic components, correlation analysis was conducted not only between meteorological and ion data but between different ion-pairs. The results of these analyses confirm that the concentration levels of ionic species are strongly affected by wind speed and temperature and that there are certain patterns between ion species to which such effects apply. In light of the significance of the wind rose patterns in the area, we further extended these analyses into four data groups that were divided on the basis of wind direction. The results of these analyses showed that the strength of correlations between important pairs (e.g.:. between windspeed and most of major inorganic species including sodium and chloride) can be ranked on the distribution of major ions are very diverse, depending on data grouping scheme for such analysis. The results of this study thus suggest that environmental behavior of chemical components be analyzed in various respects, rather than simple standard, especially if measurements are made in complex environmental condition under which both natural and anthropogenic effects are competing each other.

  • PDF

Study on the Characteristics of Concentrations and Compositions in $PM_{10}$ in Kunsan City (군산 지역에서 $PM_{10}$의 농도 및 성분 특성에 관한 연구)

  • 김성천;송재종;임성호;강달선
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.18-24
    • /
    • 2000
  • The collection of PM10 samples were collected by a PM10 hi-vol. air sampler from June, 1998 through May, 1999 in Kunsan located at western coastal region of Korea. We obtained 84 samples during sampling period. Samples were analyzed to quantify the concentration of ionic and metallic components such as SO42-, NO3-, Cl-, NH4+, K+, Na+, Mg2+, Zn, Cd, Cr, Pb and Fe. Seasonal variations of the concentrations by wind directions of each component were studied. We found that PM10 concentration had the highest level in winter and the lowest level in summer. When the wind direction is from west to east, the concentration of most ionic and metallic species were higher compared to reverse direction. That implied the effect of air pollutants from industrial area. Also, substantial amount of Na+ and Cl- were observed, which was assumed to the effect from the sea.

  • PDF

Ionic Wind Generator With Third Electrode (3전극형 이온풍 발생장치)

  • Hwang, Deok-Hyun;Jung, Hoi-Won;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.139-140
    • /
    • 2008
  • Cooling systems for electronic equipments are becoming more important. Cooling technologies using natural and forced convection are limited and operated in very low efficiency. A corona discharge is utilized as the driving mechanism for anair pump, which allows for airflow generation with low noise and no moving parts. However they do not enhance the flow rate and overcome the control mechanism of the pump. In this study a point-mesh type air pump, with a third electro de installed near the corona point, has been proposed and investigated by focusing on elevating the ionic wind velocity and power yield. As a result, the significantly enhanced ionic wind velocity and tremendously increased power yield can be obtained with the proposed air pump system.

  • PDF

Electrohydrodynamic Characteristics of AC Corona Discharge for the Frequency (교류 코로나 방전시 주파수 변화에 따른 전기유체역학적 특성)

  • Jung, Jae-Seung;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.87-92
    • /
    • 2012
  • In this paper, EHD(electrohydrodynamics) characteristics of AC corona discharge for the various frequency was investigated. Ionic wind velocity is controlled by the frequency of applied ac high voltage, and maximum velocity of the ionic wind is obtained at 1.2kHz. Maximum velocity are 1.90 m/s by metal corona electrode and 2.72m/s by wet porous corona electrode, These attain 91~99% of the maximum velocity in the DC corona discharge by adjusting the frequency through the experiments. In this paper, wet porous corona electrode has high possibility of cooling methode because a AC corona discharge using wet porous corona electrode is able to eject more water droplets than DC corona discharge.

Reduction of Soot Emitted from a $C_2$$H_4$ Normal Diffusion Flame with Application of DC Corona Discharge (DC 코로나 방전이 적용된 에틸렌 정상 확산 화염의 Soot 배출 저감)

  • Lee, Jae-Bok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.496-506
    • /
    • 2001
  • The effect of corona discharge on soot emission was experimentally investigated. Size and number concentrations of soot aggregates were measured and compared for various voltages. Regardless of the polarity of the applied voltage, the flame length decreased and the tip of flame spreaded with increasing voltage. For the experimental conditions selected, the flame was blown off toward the ground electrode by corona ionic wind. When the negative applied voltage was greater than 3kV(for electrode spacing = 3.5cm), soot particles in inception or growth region were affected by the corona discharge, resulting in the reduction of number concentration. The results show that the ionic wind favored soot oxidation and increased flame temperature. Number concentration and primary particle size greatly increased, when the corona electrodes were located the region of soot nucleation or growth(close to burner mouth).

Effect of Secondary Flows on the Particle Collection Efficiency in Single Stage Electrostatic Precipitator (1단 전기 집진기에서 2차 유동이 집진 효율에 미치는 영향)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.251-259
    • /
    • 2000
  • The ionic wind formed in a nonuniform electric field has been recognized to have a significant effect on particle collection in an electrostatic precipitator(ESP). Under normal operating conditions the effect of ionic wind is not pronounced. However, as the flow velocity becomes smaller, the ionic wind becomes pronounced and induces secondary flow, which has a significant influence on the flow field and the particle collecting efficiency. In this paper, experiments for investigating the effect of secondary flow on collection efficiencies were carried out by changing the flow velocities in 0.2-0.7m/s and the applied voltages in 9-11kV/cm. The particle size distributions and concentrations are measured by DMA and CNC. To analyze the experimental results, numerical analysis of electric filed in ESP was carried out. It shows that particle collection is influenced by two independent dimensionless numbers, $Re_{ehd}\;and\;Re_{flow}$ not by $N_{ehd}$ alone. When $Re_{flow}$, decreases for constant $Re_{ehd}$, the secondary flow prohibits the particle collection. But when $Re_{ehd}$ increases for constant $Re_{flow}$, it enhances the particle collection by driving the particles into the collection region.

The Characteristics of the Ionic Wind Generation with Corona Electrodes Installed in Form of the Ring (환형 배치된 코로나 전극에 의한 이온풍 발생 특성)

  • Kim, Jin-Gyu;Jung, Jae-Seung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • The electric power can be converted into the mechanical power by a corona discharge system. This way has not stronger force than a electric motor. But it has been applied in various industrial fields because of many advantages, no moving parts, smaller noise, simpler structure, minimizing et al. In this paper, corona discharge system with multiple corona electrode installed in form of the ring, has been studied by focusing on the electrical and mechanical characteristics. Intensity of the corona discharge depends on applied electric field, and electric field is related to the applied voltage, discharge gap spacing(s), distance between each corona electrodes(d). As a result, in the case d/s=0.9, most intensive discharge occurred in this experiments. In the region of d/s<0.9, ionic wind velocity has saturation value in spite of decreasing corona current, because each ion velocities increase by the increasing electric field.

Numerical Analysis on Wire-Plate Electrostatic Precipitator Performance for Bioaerosol Capture: Effect of Ionic Wind (와이어-평판 형태의 전기집진기식 바이오-에어로졸 포집기 성능 수치해석: 이온풍의 영향)

  • Hyun Sik Choi;Gihyeon Yu;Jungho Hwang
    • Particle and aerosol research
    • /
    • v.19 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • In our previous study, a wire-plate type electrostatic precipitator (ESP) was developed to collect bioaerosols of 100 nm size. In the study, various flow rates (40 ~ 100 L/min) and applied voltages (3 ~ 10 kV) were tested for experiment. In this study, numerical analysis was performed for the ESP of the previous study with the same flow rates and applied voltages, but with varying the size of bioaerosols to 0.04 ~ 2.5 ㎛. Overall, the numerical analysis results well predicted the experimental data. Bioaerosols of 0.1 ~ 0.5 ㎛ showed the minimum collection efficiency for all conditions because of low charge number. The effect of the ionic wind generated by the corona discharge was calculated. However, the ionic wind did not affect much the collection efficiency. The aerosol collection in the ESP of this study was due to the electrostatic force generated by particle charge in the electric field. This numerical study on the ESP can be used for the design and optimization of higher flow rate (> 100 L/min) ESP.

Composition and Characteristics of ionic Components of Aerosols Collected at Gosan Site in Jeiu Island, Korea

  • Kang, Chang-Hee;Kim, Won-Hyung;Hu, Chul-Goo;Kim, Yong-Pyo;Shim, Shang-Gyoo;Hong, Min-Sun;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.177-186
    • /
    • 2003
  • The total of 1,454 aerosol samples were collected by high volume tape sampler at the Gosan Site in Jeju Island from 1992 to 1999, and the major water-soluble ionic components were chemically analyzed. The mean concentrations of nss-S $O_4$$^{2-}$, N $H_4$$^{+}$, and N $O_3$$^{[-10]}$ showed high values, which were 6.73, 1.45, and 1.45 ${\mu}{\textrm}{m}$/㎥, respectively, while $Ca^{2+}$ and $K^{+}$ concentrations were low with the values of 0.49 and 0.42 $\mu\textrm{g}$/㎥. The concentrations of most components increased in spring but decreased in summer, especially with the remarkable increase of $Ca^{2+}$ and N $O_3$$^{[-10]}$ concentrations in spring. The seasonal comparison of nss-S $O_4$$^{2-}$ concentrations showed higher values with the order of spring > fall 〉 winter〉 summer, but spring 〉 winter〉 fall 〉 summer for N $O_3$$^{[-10]}$ Meanwhile, the concentration levels of N $a^{+}$ and C $l^{[-10]}$ increased more in winter season. According to the investigation of wind direction effect, the concentrations of most aerosol ionic components showed higher values consistently at the westerly and northerly wind conditions. Based on the factor analysis, the atmospheric aerosols in the Gosan Site are considered to be largely affected by marine sources, followed by anthropogenic and soil sources.urces..