• 제목/요약/키워드: ionic salt

검색결과 219건 처리시간 0.025초

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode

  • Kim, Kyungmin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.187-191
    • /
    • 2014
  • This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)

  • Zonouzi, Roseata;Khajeh, Khosro;Monajjemi, Majid;Ghaemi, Naser
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2013
  • In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.

이트리아 안정화 지르코니아 바인더에 의한 열전지 전기화학적 특성 (Electrochemical Properties of Yttria Stabilized Zirconia Binder for Thermal Batteries)

  • 김지연
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.331-337
    • /
    • 2017
  • Thermal batteries, reserve power source, is activated by melting of molten salt at the temperature range of $350{\sim}550^{\circ}C$. To immobile the molten state electrolyte when the thermal battery is activated, the binder must be added in electrolyte. Usually, molten salts include 30~40 wt% of MgO binder to ensure electrical insulation as well as safety. However, the conventional MgO binder tends to increase ionic conductive resistance and thus the inclusion of the binder increases the total impedance of the battery. This paper mainly focused on the study of yttria stabilized zirconia (YSZ) as an alternative binder for molten salt. The chemical stability between the molten salt and YSZ is measured by XRD and DSC. And the sufficient path for ionic conduction on molten salt could be confirmed by the enhanced wetting behavior and the enlarged pore size of YSZ. The electrochemical properties were analyzed using single cell tests so that it showed the outstanding performance than that using MgO binder.

다관능기를 도입한 아이오노머 필름의 기체투과 특성 (Permeation Property of Ionomer Film with New Multifunctional Ionic Site)

  • 이보미;정삼봉;남상용
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

솔-젤 법으로 만든 PEO-LiClO$_4$에 기초한 고분자 전해질의 물성 (Properties of Polymer Electrolytes based on PEO-LiClO$_4$ Matrix Fabricated by Sol-Gel Process)

  • 박영욱;이동성
    • 폴리머
    • /
    • 제27권3호
    • /
    • pp.265-270
    • /
    • 2003
  • 고분자 젤은 높은 이온 전도도를 가지는 대신에 나쁜 기계적 물성 때문에 많은 문제점을 가지고 있다. 다소 낮은 이온 전도도를 나타내면서 기계적, 열적, 화학적, 전기 화학적으로 우수한 특성을 가지는 근식 고체계와, 고분자 복합재료에 대한 많은 연구들이 진행 중에 있다. 본 연구는 PEO-LiClO$_4$(8:1)에 기초한 고체 고분자 전해질에 액체 상의 가소제가 아닌 고체 상으로 가소제의 역할을 하는 세라믹과 고무를 첨가시켜서 이온 전도도와 기계적 물성을 증가시키는 것에 대한 것이다. 이온 전도도는 세라믹 상과 고무상을 도입한 두 가지 경우 모두 ~$10^{-5}$ $cm^{-1}$ / 정도로 비슷하게 나타났는데, 이는 현재까지 연구되어진 것 중 최고의 값을 가지는 것과 비슷했다. 더 높은 이온 전도도를 얻기 위하여 다양한 분자량 (600~8000)을 가진 고분자를 혼합하였고, 염의 함량에 변화를 주었다. 염의 첨가와 첨가된 염의 함량에 따라 높은 결정성을 가지는 PEO가 무정형으로 바뀌는 것을 DSC 곡선을 통해 알 수 있었고, 다양한 함량의 LiClO$_4$를 첨가한 경우 고분자 유동성의 변화를 FT-IR을 통해 알 수 있었다.

글리세롤과 요소로부터 글리세롤카보네이트 합성에서 이온성액체의 촉매 특성 (Catalytic Performance of Ionic Liquids in the Synthesis of Glycerol Carbonate from Glycerol and Urea)

  • 김동우;박경아;김민지;박대원
    • Korean Chemical Engineering Research
    • /
    • 제51권3호
    • /
    • pp.347-351
    • /
    • 2013
  • 글리세롤과 요소의 카르보닐화 반응에 의한 글리세롤카보네이트(GC)의 제조반응에 대하여 이온성 액체 촉매의 특성을 조사한 결과 사용된 4급암모늄염 촉매와 이미다졸염 촉매의 알킬기의 길이가 짧을수록, 할로겐 음이온의 친핵성이 클수록 촉매의 활성은 증가하였다. TBAC 촉매에 대해서 반응변수인 반응온도, 반응시간, 진공도가 반응에 미치는 영향을 고찰하였다. $ZnCl_2$를 조촉매로 사용한 경우 각각 촉매의 활성보다 더 높은 활성을 나타내어 시너지 효과가 관찰되었으며, 이것은 혼합촉매의 산-염기적 특성에 기인하는 것으로 판단된다.

Ionic Strength Dependent Binding Mode of 9-Aminoacridine to DNA

  • 김혜경;조태섭;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권4호
    • /
    • pp.358-362
    • /
    • 1996
  • The ionic strength dependent binding mode of 9-aminoacridine (9AA), a well-known DNA intercalator, to DNA is studied by flow linear dichroism, circular dichroism, fluorescence techniques and equilibrium dialysis. The DNA-bound 9AA exhibits spectral properties corresponding to the intercalative binding mode disregarding the salt concentrations; the angle between the long-axis transition moment of the 9AA molecule and DNA helix axis is calculated to be about 65°, indicating a significant deviation from the classical intercalation. At low salt concentrations, however, upwards bending curve in Stern-Volmer plot is observed (where 9AA is a fluorophore and DNA a quencher), indicating the coexistence of both static and dynamic quenching mechanisms or the existence of an additional binding site.

Supercapacitive Properties of Carbon Electrode in an Electrolyte Containing a Newly Synthesized Two-Cation Salt

  • Cho, Won-Je;Yeom, Chul-Gi;Ko, Jang-Myoun;Lee, Yong-Min;Kim, Sang-Hern;Kim, Kwang-Man;Yu, Kook-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.63-67
    • /
    • 2011
  • To examine the effects of a two-cation ionic liquid as an electrolyte component of a supercapacitor, 1,4-bis(3-methylimidazolium-1-yl)butane tetrafluoroborate ($MIBBF_4$), dissolved in propylene carbonate (PC) or acetonitrile (ACN), is newly synthesized and tested here for potential use as an electrolyte of capacitor. The $MIBBF_4$ salt exhibits higher ionic conductivity in ACN than in PC. The supercapacitive properties of capacitors containing an activated carbon electrode and various electrolytes are evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The capacitor adopting the $MIBBF_4$/ACN electrolyte shows the largest specific capacitance at low scan rates, whereas the capacitor adopting the 1-ethyl-3-methylimidazolium tetrafluoroborate $(EMIBF_4)$/ACN electrolyte shows the largest specific capacitance at high scan rates.

Modified Carrageenan. 6. Crosslinked Graft Copolymer of Methacrylic Acid and kappa-Carrageenan as a Novel Superabsorbent Hydrogel with Low Salt- and High pH-Sensitivity

  • Pourjavadi A.;Harzandi A. M.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.483-490
    • /
    • 2005
  • A novel, polysaccharide-based, superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto kappa-carrageenan ($_{k}C$), using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. A proposed mechanism for $_{k}C$­g-polymethacrylic acid ($_{k}C$-g-PMAA) formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The effect of grafting variables, including MBA, MAA, and APS concentration, was systematically optimized to achieve a hydrogel with the maximum possible swelling capacity. The swelling kinetics in distilled water and various salt solutions were preliminarily investigated. Absorbency in aqueous salt solutions of lithium chloride, sodium chloride, potassium chloride, calcium chloride, and aluminum chloride indicated that the swelling capacity decreased with increased ionic strength of the swelling medium. This behavior can be attributed to the charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. The swelling of super absorbing hydrogels was measured in solutions with pH ranging from 1 to 13. In addition, the pH reversibility and on-off switching behavior, at pH levels of 3.0 and 8.0, give the synthesized hydrogels great potential as an excellent candidate for the controlled delivery of bioactive agents.