• Title/Summary/Keyword: ionic defect

Search Result 34, Processing Time 0.027 seconds

Synthesis and bioactivity evaluation of metal ion-substitution biphasic calcium phosphate for bone defect reconstruction (골결손부 재건을 위한 금속 이온 치환 이상인산칼슘 합성 및 생체 활성 평가)

  • Kim, Tae-Wan;Kim, Dong-Hyun;Jin, Hyeong-Ho;Lee, Seung Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.279-285
    • /
    • 2012
  • The co-precipitation technique has been applied to synthesize Biphasic Calcium Phosphate (BCP), Mg-BCP and Si-BCP. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized BCP, Mg-BCP and Si-BCP powders. The results have shown that BCP and substitution of magnesium and silicon in the calcium deficient apatites revealed the formation of biphasic mixtures of Hydroxyapatite (HAp)/${\beta}$-Tricalcium phosphate (${\beta}$-TCP) ratios after heating at $1000^{\circ}C$. Ionic substituted BCP is able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. An MTT assay indicated that BCP, Mg-BCP, and Si-BCP powders had no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

Crystal Growth, Electrical and Optical Properties of Cubic $ZrO_2$(10 mol% $Y_2O_3$) Single Crystals Doped With Rare Earth Metal Oxides(RE=Ce, Pr, Nd, Eu, Er) (희토류 금속 산화물(RE=Ce, Pr, Nd, Eu, Er)을 첨가한 큐빅 $ZrO_2$(10 mol% $Y_2O_3$)단결정의 결정성장, 전기적 성질 및 광학적 성질)

  • 정대식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.5-16
    • /
    • 1991
  • It was grown Cubic $ZrO_2(10 mol% Y_2O_3)$ single crystals doped with 1 wt% rare earth metal oxides (RE=Ce, Pr, Nd, Eu, Er) by Skull method. It was investigated electrical properties on (111) plane of grown single crystals by Impedance Spectroscopy. It was potted relation between temperature and electrical conductivities and observed the transition at $약300-400^{\circ}$ It was obtained activation energy on the migration of oxygen vacancy between low temperature (before the transition) and high temperature (after the transition till ${\11}500^{\circ}$) and its difference can be seen the activation energy of the formation of oxygen vacancies by break up defect complexes. It was obtained the activation energy according as add yttria and rare earth metal oxides and discussed ionic conduction mechanism. Grown single crystals showed Ce: orange - red, Pr: golden - yellow, Nd: lilac, Eu: light pink, Er: pink due to dopant effect from the light absorption data in the visible range.

  • PDF

Correlation between Oxygen Related Bonds and Defects Formation in ZnO Thin Films by Using X-ray Diffraction and X-ray Photoelectron Spectroscopy (XRD와 XPS를 사용한 산화아연 박막의 결함형성과 산소연관 결합사이의 상관성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.580-585
    • /
    • 2013
  • To observe the formation of defects at the interface between an oxide semiconductor and $SiO_2$, ZnO was prepared on $SiO_2$ with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on the characteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionic interactions after an annealing process, whereas that of ZnO on $SiO_2$ changed due to the various types of defects which had formed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defect deformations at the interface between the ZnO and $SiO_2$, the O 1s electron spectra were convoluted into three sub-peaks by a Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5 eV), $O^{2-}$ ions in an oxygen-deficient region (at 531.66 eV) and OH bonding (at 532.5 eV). In view of the crystallinity from the peak (103) in the XRD pattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum) at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66 eV due to the generation of $O^{2-}$ ions in the oxygen-deficient region formed by thermal activation energy.

Defect Chemistry of Ca and Nb doped $BaTiO_3$ (Ca와 Nb가 첨가된 $BaTiO_3$의 결함화학)

  • Jeong, Jae-Ho;Han, Yeong-Ho;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.798-807
    • /
    • 1994
  • The increase in the resistance of $BaTio_{3}$ with addition of Ca is attributed to the formation ofthe acceptor impurity by $CaCa^{2+}$" which substitutes Ti4+. However, some authors suggested that $Ca^{2+}$ can not substitute $Ti^{4+}$ because of its larger ionic radius. In this work, the existence of acceptor by Ca hasbeen studied through the high temperature equilibrium electrical conductivity of $BaTiO_{3}$ codoped with Caand Nb, where Ba/(Ti+Ca+Nb) was kept equal to unity. It was measured at $1000^{\circ}C$, and the oxygenpartial pressure was controlled between $10^{-15}$ ~ 1 atm. Changing the amount of added Ca and Nbresulted in the compensation effect between donor and acceptor, i.e., Nb was compensated by the acceptor.And through the defect chemical interpretation of the measured data, it was concluded that Ti canbe substitued with Ca. The existence of such acceptor was reaffirmated by ICTS(Isotherma1 CapacitanceTransient Spectroscopy) measurements.oscopy) measurements.

  • PDF

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on $ZnCe_{1+y}O_2$ ($ZnCe_{1+y}O_2$상에서 일산화탄소의 산화반응 메카니즘)

  • Kim Keu Hong;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.102-108
    • /
    • 1984
  • The catalytic oxidation of CO has been investigated on $ZnCe_{1+y}O_2$ at temperatures from 300 to $500^{\circ}C$ under various P_{CO} and PO_2 conditions. The oxidation rates have been correlated with 1.5-order kinetics: first order with respect to CO and 0.5 order with respect to O2. CO appears to be absorbed essentially on the O lattice of $ZnCe_{1+y}O_2$ as a molecular species, while $O_2$ adsorbs on an O vacancy as an ionic species. The conductivity data show that CO adsorption contributes electron to the conduction band and the adsorption process of $O_2$ withdraws it from an O vacancy. The oxidation mechanism and the defect model of $ZnCe_{1+y}O_2$ are inferred at given temperature and $PO_2'$s from the agreement between the conductivities and kinetic data. It is suggested that CO absorption is the rate-controlling.

  • PDF

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Improvement of Mechanical Properties of IPMC through Developing a Degree of Dispersion of SWCNT/Nafion Composite (SWCNT/Nafion 복합체의 분산능 향상을 통한 IPMC의 기계적 특성 향상)

  • Kwon, Hui-June;Kim, Ha-Na;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.131-136
    • /
    • 2011
  • Many researchers are recently studying about Electroactive polymer(EAP). But it has a physical limitation, because of property of material. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. This study focuses on the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. To come up with mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we dispersed Single-walled carbon nanotubes(SWCNTs). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. We fabricated a disperse SWCNT/Nafion composite uniformly. Through the use of the E-beam evaporator to form an uniform electrode layer, we consummated the IPMC actuator. This result shows improving 1.5 times mechanical properties about driving force in IPMC.

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis

  • Lee, Kee Hag;Lee, Jeeyoung;Dieckmann, Rudiger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.629-632
    • /
    • 2013
  • Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.

Defect Structure and Electrical Conduction Mechanism of Yttrium Sesquioxide (산화이트륨의 결함구조 및 전기전도 메카니즘)

  • Kim, Keu-Hong;Park, Sung-Ho;Choi, Jae-Shi
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.149-154
    • /
    • 1984
  • The electrical conductivity of p-type yttrium sesquioxide has been measured as a function of temperature and of oxygen partial pressure at temperatures from 650 to 1050$^{\circ}C$C and oxygen partial pressures from $1 {\times}10^{-5}\;to\;2{\times}10^{-1}$atm. Plots of log conductivity vs. 1/T at constant oxygen partial pressures are found to be linear with low-and high-temperature dependences of conductivity. The high-temperature dependence of conductivity shows two different defect structures. The plots of log conductivity vs. log $Po_2$ are found to be linear at $Po_2$'s of $10^{-5}\;to\;10^{-1}$ atm. The electrical conductivity dependences on $Po_2$ are found to be ${{\sigma}{\propto}Po_2}^{1/6}$at $850{\sim}950^{\circ}C,\;{{\sigma}{\propto}Po_2}^{3/16}$ at $950{\sim}1050^{\circ}C\;and\;{{\sigma}{\propto}Po_2}^{1/7.5}{\sim}{{\sigma}{\propto}Po_2}^{1/8.3}\;at\;650{\sim}800^{\circ}C$, respectively. The defect structures are$O_i{''}$ at $850{\sim}950^{\circ}C$ and $V_M{'''}$ at $950{\sim}1050^{\circ}C$. The electron hole is main carrier type, however, ionic contribution is found at lower temperature portion.

  • PDF

Comparison of Silver-containing Hydrofiber Dressing and Hydrophobic Dressing for Effects on MRSA-infected Full Thickness Skin Defect in the Rat (MRSA에 감염된 흰쥐의 전층피부결손에 대한 은 함유 하이드로화이버 드레싱과 소수성 드레싱의 효과의 비교)

  • Lee, Hun-Joo;Kang, So-Ra;Kim, Yang-Woo
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.359-368
    • /
    • 2011
  • Purpose: Aquacel Ag$^{(R)}$ is a hydrofiber wound dressing integrated with ionic silver. Sorbact$^{(R)}$ is a hydrophobiccoated dressing that uses the hydrophobic interaction with microbes. In this study, we compared the wound healing effects and the antibacterial effects of Medifoam$^{(R)}$, Betadine soaked, Aquacel Ag$^{(R)}$ and Sorbact$^{(R)}$ dressings against MRSA-infected wounds. Methods: Eighty rats were divided into four groups: Medifoam$^{(R)}$; Betadine soaked; Aquacel Ag$^{(R)}$; and Sorbact$^{(R)}$. A $1.5{\times}1.5cm$ square full-thickness wound was made on the dorsum of each rat and infected with MRSA. Twenty-four hours thereafter, each dressing was applied to the wound and changed every other day. One, 3, 7, 11 and 15 days after the wound infection, swab culture grade, wound bed appearance score, and wound defect size change were evaluated, and 7 and 15 days after, histologic evaluation was compared between the groups. Results: The bacteria load of wounds in the Sorbact$^{(R)}$ group decreased earlier than in the other groups. The wound bed appearance score of the Sorbact$^{(R)}$ group also increased quicker, compared with the other groups. However, the size of wounds of the Aquacel Ag$^{(R)}$ group decreased more rapidly, compared with other groups. From the histologic point of view, there was no significant difference between Betadine soaked, Aquacel Ag$^{(R)}$ and Sorbact groups. Conclusion: The hydrophobic dressing using Sorbact$^{(R)}$ showed a more rapid reduction in the MRSA load and an elevation in the wound bed appearance score, but a slower decrease in wound size change due to detachment of wound bed tissue when the dressing was eliminated in the low exudate wound. The silver-containing hydrofiber dressing using Aquacel Ag$^{(R)}$ was more effective in ultimate wound size reduction, but some debris was trapped in the wound tissue and induced foreign body reaction in the high exudate wound. Thus, ongoing selection process of treatment based on the evaluation of the infectious wound state will be very important.