• Title/Summary/Keyword: ionic concentration

Search Result 731, Processing Time 0.038 seconds

Studies of Magnesium-Eriochrome Black T Complex in Acetonitrile (Acetonitrile에서의 Mg-EBT$^-$ 착물에 관한 연구)

  • Doo Won Park;Won Hyung Choi;Heung Lark Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.256-261
    • /
    • 1973
  • Complex formation of magnesium-Eriochrome Black T at constant ionic strength and hydrogen ion concentration have been studied spectrophotometrically in acetonitrile solution. The measured pH values were calibrated with standard buffer solutions by using a glass electrode Ag/0.1M $AgNO_3$ reference electrode couple. The results are as follows;$E_{glass}=716+59.1\;logA_{H+}[mv]$+(in mv. vs. Ag reference electrode for picric acid $-10^{-3}M$ tetramethylammonium picrate buffer), and $E_{glass}=1,193+59.1\;logA_{H+}[mv]$(in mv. vs. Ag reference electrode for 1,3-diphenylguanidine $-3{\times}10^{-3}M $ 1,3-diphenylguanidine perchlorate buffer). The acid dissociation exponent of ligand, $ pK_{H,EBT-}$was found to be 9.1. The conditional formation constants of $MgEBT^{-}$complex by log-ratio method were 3.97 (when m = 2) and 5.02 (when m = 1) as $log K_n$, respectively, for the reaction of $H_mEBT^{(3-m)-} + Mg^{2+} {\leftrightarrow}MgEBT^{-} + mH^{+}$. The present study showed that$MgEBT^{-}$ has the composition of 1:1 which agrees with the result of Schwarzenbach et al. in aqueous solution.

  • PDF

Mössbauer Study of Silver Nanoparticle Coated Perovskites La0.7Sr0.3Co0.3Fe0.7O3-δ (LSCF) (은(Ag) 나노입자가 코팅된 페롭스카이트 La0.7Sr0.3Co0.3Fe0.7O3-δ의 Mössbauer 분광연구)

  • Uhm, Young-Rang;Rhee, Chang-Kyu;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • The Ag nanoparticles attached $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ (LSCF) perovskites were prepared by plasma method. The Ag nanoparticles with size of several nanometers deposited from the Ag target were coated on the surface of LSCF powders with size range from 0.2 to 3 ${\mu}m$. The agglomeration of Ag particles annealed at $800^{\circ}C$ under inert gas of Ar were rarely observed. The inter-diffusion between surface Ag and core LSCF is effectively strong to prevent aggregation of Ag nanoparticles. The wave number of FT-IR spectra for LSCF were largely shifted as the concentration of Ag on LSCF up to 2.11 wt.%. The ionic states of irons in LSCF were measured by M$\ddot{o}$ssbauer spectroscopy. The small amount of $Fe^{4+}$ ions are converted to $Fe^{3+}$ ions after Ag nanopartcles were coated on LSCF.

Analysis of an Immobilized β-Galactosidase Reactor with Competitive Product Inhibition Kinetics (경쟁적 저해를 갖는 고정화 β-galactosidase 반응기의 해석)

  • Kang, Byung Chul
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1471-1476
    • /
    • 2013
  • The present study deals with the immobilization of Kluyveromyces lactis ${\beta}$-galactosidase on a weak ionic exchange resin (Duolite A568) as polymer support. ${\beta}$-Galactosidase was immobilized using the adsorption method. A kinetic study of the immobilized enzyme was performed in a packed-bed reactor. The adsorption of the enzyme followed a typical Freundlich adsorption isotherm. The adsorption parameters of k and n were 14.6 and 1.74, respectively. The initial rates method was used to characterize the kinetic parameters of the free and immobilized enzymes. The Michaelis-Menten constant ($K_m$) for the immobilized enzyme (120 mM) was higher than it was for the free enzyme (79 mM). The effect of competitive inhibition kinetics was studied by changing the concentration of galactose in a recycling packed-bed reactor. The kinetic model with competitive inhibition by galactose was best fitted to the experimental results with $V_m$, $K_m$, and $K_I$ values of 46.3 $mmolmin^{-1}mg^{-1}$, 120 mM, and 24.4 mM, respectively. In a continuous packed-bed reactor, increasing the flow rate of the lactose solution decreased the conversion efficiency of lactose at different input lactose concentrations. Continuous operation of 11 days was conducted to investigate the stability of a long-term operation. The retained activity of the immobilized enzymes was 63% and the half-life of the immobilized enzyme was found to be 15 days.

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery (차량용 12-V 납축전지의 충·방전 모델링)

  • Kim, Ui Seong;Jeon, Sehoon;Jeon, Wonjin;Shin, Chee Burm;Chung, Seung Myun;Kim, Sung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of $25^{\circ}C$. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Synthesis of high capacity ionic oxidizer; HAN[Hydroxylammonium Nitrate] (고에너지 이온성 산화제 HAN [Hydroxylammonium nitrate] 합성공정 연구)

  • Kim, So-Hee;Park, Yeon-Soo;Kim, Wooram;Park, Mi-Jeong;Kwon, Yoon-Za;Jo, Young min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.165-173
    • /
    • 2019
  • Hydrazine[$N_2H_4$] is a typical propellant for a rocket fuel in the field of aerospace. Since it is very toxic and harmful to the environment, various environmentally-friendly propellants have been developed. In this study, relatively a safe propellant, hydroxylammonium nitrate[$NH_3OHNO_3$], was prepared via a neutralization reaction of hydroxylamine[$NH_2OH$] and nitric acid[$HNO_3$]. FT-IR was used to analyze the chemical composition, chemical structure and functional groups of HAN. Thermogravimetric analysis showed the decomposition temperature of HAN. Ion chromatography was also used to evaluate the content of nitrate ions. It was proved that the peaks of FT-IR at $3161cm^{-1}$ and $1324cm^{-1}$ indicates the functionalities of N-H and N-O present in HAN. The decomposition temperature of HAN synthesized at pH 5 to 7 was $120-140^{\circ}C$, and pH 8 resulted in higher decomposition temperature than $140^{\circ}C$. Meanwhile, the sample obtained from pH 6-7 showed the concentration of nitric acid ion with 70%.

The Study of Evaluation Methods of Electrolyte for Li/SO2Cl2 Battery (Li/SO2Cl2 전지용 전해액의 평가 방법 연구)

  • Roh, Kwang Chul;Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Ko, Young-Ok;Lee, Jeong-Do;Chung, Kwang-il;Shin, Dong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.

Adsorption of Antibiotics on Serum Albumin Nanoparticle (혈청 알부민 나노입자를 이용한 항생제 흡착)

  • Kim, Hyunji;Lim, Sung In
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Antibiotics are compounds broadly used to treat patients with infectious diseases and to enhance productivity in agriculture, fisheries, and livestock industries. However, due to the overuse of antibiotics and their low biodegradability, a substantial amount of antibiotics is leaking into the sewer, subsequently resulting in pollution and the emergence of antibiotic-resistant bacteria. This study explores biodegradable serum albumin's potential as an adsorbent to remove antibiotics from water. Serum albumin is a natural blood protein that transports various metabolites and hormones to all tissues' extravascular spaces. While serum albumin is highly water-soluble, it has intrinsic binding sites which readily accommodate ionic, hydrophilic, or hydrophobic molecules, rendering it a good building block for a nano-adsorbent. To induce coacervation, a desolvating agent, ethanol, was added dropwise into the aqueous albumin solution, resulting in dehydration and liquid-liquid phase separation of albumins into albumin nanoparticles within a size range of 150 ~ 170 nm. The addition of glutaraldehyde as a cross-linker improved the size stability and homogeneity of albumin nanoparticles. Adsorption of amoxicillin antibiotics on albumin nanoparticles was dependent upon glutaraldehyde concentration used in desolvation and pH during adsorption. The maximum adsorption capacity measured by spectrophotometry was found to be 12.4 micrograms of amoxicillin per milligram of albumin nanoparticle. These results demonstrate serum albumin's potential as a building block for fabricating a natural nano-adsorbent to remove antibiotics from water.

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

Effect of Pyrolysis Fuel Oil Based Carbon Coating onto CFX Cathode on High-rate Performance of Lithium Primary Batteries (불화탄소 전극의 열분해 연료유 기반 탄소 코팅이 리튬일차전지의 고율속 성능에 미치는 영향)

  • Sangyeop Lee;Naeun Ha;Seongjae Myeong;Chaehun Lim;Sei-Hyun Lee;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.321-328
    • /
    • 2024
  • The performance of carbon fluoride-based lithium primary batteries (Li/CFX) is limited due to poor rate capability resulting from the low conductivity of carbon fluoride, which is used as the active material. Therefore, in this study, we applied a carbon coating using pyrolysis fuel oil on carbon fluoride to overcome this limitation and considered its electrochemical performance. An amorphous carbon layer was formed on the surface of the carbon fluoride through carbon coating, and the surface physicochemical properties of the carbon fluoride were meticulously considered based on the heat treatment temperature. The advanced research chemical 1000 heat treated at 450 ℃ (ARC@C450) sample, which was commercial carbon fluoride heat-treated at 450 ℃, showed the largest increase in the concentration of sp2 carbon bonds (62%) and the highest formation of semi-ionic C-F bonds. Also, the primary battery using the ARC@C450 sample as a cathode active material exhibited stable discharge capability at the highest rate of 5 C (392 mAh/g), and the Rct value was reduced by 53% compared to the untreated sample. Therefore, we proposed pyrolysis fuel oil-based carbon coating as a method to overcome the low conductivity of carbon fluoride, and the carbon-coated carbon fluoride showed excellent rate performance, suggesting its potential application in high-power primary batteries.