DOI QR코드

DOI QR Code

Effect of Pyrolysis Fuel Oil Based Carbon Coating onto CFX Cathode on High-rate Performance of Lithium Primary Batteries

불화탄소 전극의 열분해 연료유 기반 탄소 코팅이 리튬일차전지의 고율속 성능에 미치는 영향

  • Sangyeop Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Naeun Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongjae Myeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Sei-Hyun Lee (Department of Electrical and Electronic Engineering, Korea Polytechnic IV College) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이상엽 (충남대학교 응용화학공학과) ;
  • 하나은 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 이세현 (한국폴리텍IV대학 전기전자제어과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2024.06.12
  • Accepted : 2024.07.08
  • Published : 2024.08.10

Abstract

The performance of carbon fluoride-based lithium primary batteries (Li/CFX) is limited due to poor rate capability resulting from the low conductivity of carbon fluoride, which is used as the active material. Therefore, in this study, we applied a carbon coating using pyrolysis fuel oil on carbon fluoride to overcome this limitation and considered its electrochemical performance. An amorphous carbon layer was formed on the surface of the carbon fluoride through carbon coating, and the surface physicochemical properties of the carbon fluoride were meticulously considered based on the heat treatment temperature. The advanced research chemical 1000 heat treated at 450 ℃ (ARC@C450) sample, which was commercial carbon fluoride heat-treated at 450 ℃, showed the largest increase in the concentration of sp2 carbon bonds (62%) and the highest formation of semi-ionic C-F bonds. Also, the primary battery using the ARC@C450 sample as a cathode active material exhibited stable discharge capability at the highest rate of 5 C (392 mAh/g), and the Rct value was reduced by 53% compared to the untreated sample. Therefore, we proposed pyrolysis fuel oil-based carbon coating as a method to overcome the low conductivity of carbon fluoride, and the carbon-coated carbon fluoride showed excellent rate performance, suggesting its potential application in high-power primary batteries.

불화탄소 기반 리튬일차전지(Li/CFX)의 활물질로 이용되는 불화탄소는 낮은 전도성에 기인한 열악한 율속 특성으로 방전 성능이 제한적이다. 따라서, 본 연구에서는 이를 극복하기 위하여 불화탄소에 열분해 연료유를 이용하여 탄소 코팅을 진행하였고, 전기화학적 성능을 고찰하였다. 탄소 코팅에 의하여 불화탄소 표면에 무정형 탄소층이 형성되었으며, 열처리 온도에 따른 불화탄소의 표면 물리화학적 특성을 면밀히 고찰하였다. 상용 불화탄소를 450 ℃에서 열처리한 ARC@C450 샘플은 sp2 탄소 결합의 함량이 62%로 가장 크게 증가하였으며, 반이온성 C-F 결합이 가장 많이 형성되었다. 또한, ARC@C450 샘플을 환원극 활물질로 이용한 일차전지는 가장 높은 5 C 율속(392 mAh/g)에서 안정적인 방전 특성을 보였으며, Rct 값은 미처리 시료에 비하여 53% 감소하였다. 따라서, 본 연구에서는 불화탄소의 낮은 전도성을 극복하기 위한 방법으로 열분해 연료유 기반 탄소 코팅을 제안하며, 탄소 코팅된 불화탄소는 우수한 율속 성능을 나타냄으로 고출력 일차전지로의 응용 가능성을 제시한다.

Keywords

Acknowledgement

이 논문은 국방과학연구소의 지원을 받아 수행된 연구임(UE211060GD).

References

  1. W. Feng, Status and development trends for fluorinated carbon in China, New Carbon Mater., 3, 130-142 (2023).
  2. B. Sayahpour, H. Hirsh, S. Bai, N. B. Schorr, T. N. Lambert, M. Mayer, W. Bao, D. Cheng, M. Zhang, and K. Leung, Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery, Adv. Energy Mater., 12, 2103196 (2022).
  3. M. A. Reddy and M. Fichtner, Batteries based on fluoride shuttle, J. Mater. Chem., 21, 17059-17062 (2011).
  4. N. Ha, S. G. Jeong, C. Lim, S. Ha, C. G. Min, Y. Choi, and Y. S. Lee, Preparation and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries, Carbon Lett., 33, 1013-1018 (2023).
  5. K. H. Kim, J. H. Cho, J. U. Hwang, J. S. Im, and Y. S. Lee, A key strategy to form a LiF-based SEI layer for a lithium-ion battery anode with enhanced cycling stability by introducing a semi-ionic CF bond, J. Ind. Eng. Chem., 99, 48-54 (2021).
  6. S. Ha, C. Lim, and Y. S. Lee, Fluorination methods and the properties of fluorinated carbon materials for use as lithium primary battery cathode materials, J. Ind. Eng. Chem., 111, 1-17 (2022).
  7. Q. Zhang, S. D'Astorg, P. Xiao, X. Zhang, and L. Lu, Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries, J. Power Sources, 195, 2914-2917 (2010).
  8. S. S. Zhang, D. Foster, J. Wolfenstine, and J. Read, Electrochemical characteristic and discharge mechanism of a primary Li/CFX cell, J. Power Sources, 187, 233-237 (2009).
  9. Y. Peng, Y. Liu, R. Ali, J. Ma, J. Hou, X. Yang, and X. Jian, Air plasma-induced carbon fluoride enabling active C-F bonds for double-high energy/power densities of Li/CFX primary battery, J. Alloys Compd., 905, 164151 (2022).
  10. N. Sharma, M. Dubois, K. Guerin, V. Pischedda, and S. Radescu, Fluorinated (nano)carbons: CFX electrodes and CFX-based batteries, Energy Technol., 9, 2000605 (2020).
  11. S. Ha, C. Lim, C. G. Min, S. Myeong, N. Ha, and Y. S. Lee, Improved energy and power density of a Li/CFX primary battery through control of the C-F bonds with thermobaric modifications, J. Ind. Eng. Chem., 133, 525-532 (2024).
  12. J. Ma, Y. Liu, Y. Peng, X. Yang, J. Hou, C. Liu, Z. Fang, and X. Jian, UV-radiation inducing strategy to tune fluorinated carbon bonds delivering the high-rate Li/CFX primary batteries, Compos. B Eng., 230, 109494 (2022).
  13. C. Lim, S. Ha, N. Ha, S. G. Jeong, and Y. S. Lee, Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching, Carbon Lett., 34, 611-617 (2024).
  14. H. P. Zhou, G. T. Chen, L. S. Yao, S. Zhang, T. T. Feng, Z. Q. Xu, Z. X. Fang, and M. Q. Wu, Plasma-enhanced fluorination of layered carbon precursors for high-performance CFX cathode materials, J. Alloys Compd., 941, 168998 (2023).
  15. S. Ha, C. Lim, S. Myeong, I. W. Lee, and Y. S. Lee, Improvement of the electrochemical properties of Li/CFX primary batteries induced by nitrogen plasma treatment from silica and carbon fluoride, Carbon Lett., 34, 1521-1528 (2024).
  16. D. W. Zou, X. G. Fu, G. B. Chen, Y. F. Liu, B. S. Wu, and X. Jian, Acetylene/argon mixture plasma to build ultrathin carbon bridge of CFX/C/MnO2 for high-rate lithium primary battery, Rare Metals, 43, 2574-2584 (2024).
  17. Z. Chen, Q. Zhang, and Q. Liang, Carbon-coatings improve performance of Li-ion battery, Nanomaterials, 12, 1936 (2022).
  18. D. Kim, K. H. Kim, C. Lim, and Y. S. Lee, Carbon-coated SiOX anode materials via PVD and pyrolyzed fuel oil to achieve lithium-ion batteries with high cycling stability, Carbon Lett., 32, 321-328 (2022).
  19. U. Nisar, N. Muralidharan, R. Essehli, R. Amin, and I. Belharouak, Valuation of surface coatings in high-energy density lithium-ion battery cathode materials, Energy Storage Mater., 38, 309-328 (2021).
  20. L. Zhu, L. Li, J. Zhou, Y. Pan, W. Lei, and Z. Ma, Polypyrrole-coated graphite fluorides with high energy and high power densities for Li/CFX battery, Int. J. Electrochem. Sci., 11, 6413-6422 (2016).
  21. L. Li, L. Zhu, Y. Pan, W. Lei, Z. Ma, Z. Li, J. Cheng, and J. Zhou, Integrated polyaniline-coated CFx cathode materials with enhanced electrochemical capabilities for Li/CFX primary battery, Int. J. Electrochem. Sci., 11, 6838-6847 (2016).
  22. L. Zhu, Y. Pan, L. Li, J. Zhou, W. Lei, J. Deng, and Z. Ma, Preparation of CFX@C microcapsules as a high-rate capability cathode of lithium primary battery, Int. J. Electrochem. Sci.,11, 14-22 (2016).
  23. J. Hou, F. Cao, H. Xu, J. Fu, R. Ali, Y. Liu, and X. Jian, Constructing carbon-decorated CFX nanocapsule by atomic layer deposition and catalytic chemical vapor deposition for high-capacity lithium primary battery, Appl. Surf. Sci., 596, 153570 (2022).
  24. Z. Lu, N. Liu, H. W. Lee, J. Zhao, W. Li, Y. Li, and Y. Cui, Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes, ACS Nano, 9, 2540-2547 (2015).
  25. Y. S. Han and J. Y. Lee, Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition, Electrochim. Acta, 48, 1073-1079 (2003).
  26. H. Lia and H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun., 48, 1201-1217 (2012).
  27. C. Qi, S. Li, Z. Yang, Z. Xiao, L. Zhao, F. Yang, G. Ning, X. Ma, C. Wang, J. Xu, and J. Gao, Suitable thickness of carbon coating layers for silicon anode, Carbon, 186, 530-538 (2022).
  28. G. D. Park, J. H. Choi, D. S. Jung, J. S. Park, and Y. C. Kang, Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries, J. Alloys Compd., 821, 153224 (2020).
  29. D. V. Korzhenko, Y. N. Yurjev, D. R. Emlin, S. A. Plotnikov, A. B. Vladimirov, I. Y. Romanov, B. A. Loginov, and A. B. Loginov, Comparative analysis of properties of the carbon-based coatings obtained through various PVD and CVD deposition methods, J. Phys. Conf. Ser., 1443, 012006 (2020).
  30. S. Myeong, C. Lim, S. Kim, and Y. S. Lee, High-efficiency oil/water separation of hydrophobic stainless steel mesh filter through carbon and fluorine surface treatment, Korean J. Chem. Eng., 40, 1418-1424 (2023).
  31. K. S. Kim, J. U. Hwang, J. S. Im, J. D. Lee, J. H. Kim, and M. I. Kim, The effect of waste PET addition on PFO-based anode materials for improving the electric capacity in lithium-ion battery, Carbon Lett., 30, 545-553 (2020).
  32. J. H. Kim, J. G. Kim, K. B. Lee, and J. S. Im, Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch, Carbon Lett., 29, 203-212 (2019).
  33. M. J. Jung, J. Y. Jung, D. Lee, and Y. S. Lee, A new pitch reforming from pyrolysis fuel oil by UV irradiation, J. Ind. Eng. Chem., 22, 70-74 (2015).
  34. N. Ha, C. Lim, S. Ha, S. Myeong, and Y. S. Lee, Electrochemical characteristics of CFX based lithium primary batteries produced by carbon fiber reinforced plastic-derived waste carbon fibers, Appl. Chem. Eng., 34, 515-521 (2023).
  35. S. Cheon, N. Ha, C. Lim, S. Myeong, I. W. Lee, and Y. S. Lee, Fabrication and eletrochemical characterization of carbon fluoride-based lithium-ion primary batteries with improved rate performance using oxygen plasma, Appl. Chem. Eng, 34, 534-540 (2023).
  36. J. H. Lim, Y. Myung, M. H. Yang, and J. Lee, Facile formation of a LiF-carbon layer as an artificial cathodic electrolyte interphase through encapsulation of a cathode with carbon monofluoride, ACS Appl. Mater. Interfaces, 13, 31741-31748 (2021).
  37. L. Wang, Y. Li, S. Wang, P. Zhou, Z. Zhao, X. Li, and J. Zhou, Fluorinated nanographite as a cathode material for lithium primary batteries, ChemElectroChem, 6, 2119-2343 (2019).
  38. J. Ma, C. Wang, and S. Wroblewski, Kinetic characteristics of mixed conductive electrodes for lithium ion batteries, J. Power Sources, 164, 849-856 (2007).
  39. S. Myeong, S. Ha, C. Lim, C. G. Min, S. Cheon, Y. Yu, X. Yang, and Y. S. Lee, Pore structure and N/F bifunctional groups in hierarchical porous carbons via spontaneous silica etching for enhanced capacitive deionization performance, Sep. Purif. Technol., 350, 128020 (2024).
  40. S. Myeong, S. Ha, C. Lim, C. G. Min, N. Ha, B. K. Kim, and Y. S. Lee, Synergistic effects of fluorine plasma on improving carbon aerogel anodes performance in lithium-ion batteries, J. Electroanal. Chem., 964, 118332 (2024).