• Title/Summary/Keyword: ionic concentration

Search Result 730, Processing Time 0.03 seconds

Statistical Analysis for Silver Nanoparticle Synthesis Using Ionic Liquid (이온성액체 기반 은 나노입자 합성을 위한 통계적 실험 분석)

  • Lee, Kil Woo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.77-80
    • /
    • 2018
  • Silver nanoparticles with various sizes were synthesized using ionic liquids. In order to conduct more efficient research, experimental methods and results were analyzed statistically. First, effects of five different parameters including the reaction time, temperature, NaOH concentration, reducing agent and ionic liquid amount on the size of silver particles were investigated. As a result, the effects of time and temperature were negligible. The experimental conditions for the other three factors were then statistically constructed. From XRD analyses, the particles synthesized under all conditions had a pure silver crystal structure. Sizes of the synthesized silver particles were also analyzed by HR-SEM. In the three synthetic conditions, NaOH concentration had the greatest influence on determining the size of silver particles and the reducing agent concentration was relatively minute. Synthesis conditions of silver particles with various sizes were presented by using statistical methods with respect to NaOH and ionic liquids. In addition, the sizes of silver particles according to three experimental conditions were derived by the mixture method.

Regulation of Electrochemical Oxidation of Glucose by lonic Strength-Controlled Virtual Area of Nanoporous Platinum Electrode

  • Kim, Jong-Won;Park, Se-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.203-206
    • /
    • 2007
  • Electrochemical reaction of glucose was regulated by the electrochemically active area of nanoporous platinum, which is controlled by ionic strength. The profile of the oxidation current of glucose vs. ionic strength was identical with that of the electrochemically active area. This result confirms that the nanopores are virtually opened for the electrochemical reaction of glucose when the ionic strength climbs over a specific concentration and implies that the electrochemical reactions on nanoporous electrode surfaces can be controlled by concentration of electrolyte.

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2553-2556
    • /
    • 2010
  • On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.

Stability of [D-Ala$^2$]-Methionine Enkephalinamide in Aqueous Solution (수용액중 [D-알라$^2$-메치오닌엔케팔린아미드의 안정성)

  • 전인구;양윤정;이치호
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 1993
  • To evaluate the feasibility of transmucosal delivery of methionine enkephalin analog, [$D-Ala^2$]-me-thionine enkephalinamide (YAGFM), the influence of pH, temperature, ionic strength and initial peptide concentration on the physicochemical stability of YAGFM in aqueous buffered solutions were investigated using a stability-indicating HPLC method. The degradation of YAGFM followed the pseudo-first-order kinetics. From the pH-rate profile, the maximum stability of YAGFM was shown to be at the pH of about 5.0. The halflife for the degradation of YAGFM was found to be 181.3 days at pH 5.0 and $37^{\circ}C.$ Arrhenius plots of the data obtained at 25~$45^{\circ}C$ were reasonably linear with a correlation coefficient greater than 0.99, and the activation energy was calculated to be 8.9 kcal/mole. A higher ionic strength and/or a higher peptide concentration in buffered solutions retarded the degradation of YAGFM.

  • PDF

Reduction of Soot Emitted from a $C_2$$H_4$ Normal Diffusion Flame with Application of DC Corona Discharge (DC 코로나 방전이 적용된 에틸렌 정상 확산 화염의 Soot 배출 저감)

  • Lee, Jae-Bok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.496-506
    • /
    • 2001
  • The effect of corona discharge on soot emission was experimentally investigated. Size and number concentrations of soot aggregates were measured and compared for various voltages. Regardless of the polarity of the applied voltage, the flame length decreased and the tip of flame spreaded with increasing voltage. For the experimental conditions selected, the flame was blown off toward the ground electrode by corona ionic wind. When the negative applied voltage was greater than 3kV(for electrode spacing = 3.5cm), soot particles in inception or growth region were affected by the corona discharge, resulting in the reduction of number concentration. The results show that the ionic wind favored soot oxidation and increased flame temperature. Number concentration and primary particle size greatly increased, when the corona electrodes were located the region of soot nucleation or growth(close to burner mouth).

A Study of Protein Ion Exchange Chromatography based on Plate Theory (단이론에 따른 단백질 이온교환 크로마토그라피의 연구)

  • 김인호;김진태
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.485-491
    • /
    • 1995
  • Protein ion exchange chromatography was studied experimentally in order to prove the theoretical prediction from the linear model of Yamamoto, S. et al (1). Adsorption isotherms were measured as a function of ionic strength in a batch experiment. The relationship between the characteristics of chromatogram and the operating conditions of ionic strength, flow rate, length of column, concentration and amount of protein sample were studied. At the higher ionic strength, the lower flow rate and the longer column conditions, the higher number of plate was obtained. Satisfactory agreement was observed between the experimental and the calculated chromatograms except for the case of high protein concentration.

  • PDF

Two Types of Vanadate-sensitive Microsomal ATPases in Tracheal Epithelial Cells

  • Jung Sakong;Kim, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.22-22
    • /
    • 1997
  • The physiological activity of tracheal epithelial cells is closely related with the ionic conditions of cytosol, specially the concentration of cytosolic Ca$\^$2+/. We have prepared microsomes in these cells and the molecular mechanisms of ionic regulations were investigated.(omitted)

  • PDF

Dye Sensitized Solar Cell using Polymer Electrolytes based on Poly(ethylene oxide) with an Ionic Liquid

  • Singh Pramod K.;Kim, Ki-Il;Rhee Hee-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.273-273
    • /
    • 2006
  • The encapsulation of volatile organic electrolytes is a major challenge in practical applications of the DSSC. Ionic liquid (IL) within polymer electrolytes is an attractive candidate for replacement. Here we used a low viscosity ionic liquid 1-ethyl 3-methylimidazolium thiocyanate in order to modify ionic conductivity (${\sigma}$) of polymer electrolyte ($PEO:Kl/l_{2}$) and hence DSSC efficiency. The doping of IL enhanced ${\sigma}$ and attained maximum (${\sigma}=7.62{\times}10^{-4}S/cm$) at 80 wt% of IL concentration. Beyond this it was harder to get stable films. XRD confirmed that the intensity of the sharp PEO crystalline peaks decreased when IL was added. The DSC studies confirmed the reduction in crystallinity by adding ionic liquid.The efficiency of solar cell using aforesaid material was 0.6 % at 1 sun irradiation.

  • PDF

Evaluation of Electrokinetic Flow Mobility Using Isotacho-Electrophoresis Techniques

  • An, J.H.;Joo, Y.H.;Lee, C.Y.;Lee, Y.J.;Park, C.W.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.444-448
    • /
    • 2011
  • In the present study, we separated the marker particles from the suspending particle mixture solution using isotacho-electrophoresis technique, a novel quantitative ionic particle separation method, in the microchannel. A multiple stacking zone of the suspending particle was visualized with variations in electric field strength, pH value and concentration of the ionic solution. In particular, the electrophoretic mobility of ionic particle (fluorescein) was estimated based on the electrophoretic velocity value measured by the particle image velocimetry. As a result, isotacho-electrophoresis zones were clearly visualized as going downstream in the electric field. The particle migration velocity increased proportional to the applied voltage increase; it was also affected by the pH value variations in the ionic solution.

Characteristics of Fine Particle Concentration and Ionic Elements of PM2.5 during Sea Breeze Occurrences in Summertime in Busan (부산지역 여름철 해풍 발생 시 미세먼지와 초미세먼지 중의 이온성분 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.465-474
    • /
    • 2021
  • This research investigated the characteristics of fine particle concentration and ionic elements of PM2.5 during sea breeze occurrences during summertime in Busan. The PM10 and PM2.5 concentrations of summertime sea breeze occurrence days in Busan were 46.5 ㎍/m3 and 34.9 ㎍/m3, respectively. The PM10 and PM2.5 concentrations of summertime non-sea breeze occurrence days in Busan were 25.3 ㎍/m3 and 14.3 ㎍/m3, respectively. The PM2.5/PM10 ratios of sea breeze occurrence days and non-sea breeze occurrence days were 0.74 and 0.55, respectively. The SO42-, NH4+, and NO3- concentrations in PM2.5 of sea breeze occurrence days were 9.20 ㎍/m3, 4.26 ㎍/m3, and 3.18 ㎍/m3 respectively. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) of sea breeze occurrence days were 0.33 and 0.05, respectively. These results indicated that understanding the fine particle concentration and ionic elements of PM2.5 during sea breeze summertime conditions can provide insights useful for establishing a control strategy of urban air quality.