• Title/Summary/Keyword: ionic concentration

Search Result 733, Processing Time 0.025 seconds

Composition and Characteristics of ionic Components of Aerosols Collected at Gosan Site in Jeiu Island, Korea

  • Kang, Chang-Hee;Kim, Won-Hyung;Hu, Chul-Goo;Kim, Yong-Pyo;Shim, Shang-Gyoo;Hong, Min-Sun;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.177-186
    • /
    • 2003
  • The total of 1,454 aerosol samples were collected by high volume tape sampler at the Gosan Site in Jeju Island from 1992 to 1999, and the major water-soluble ionic components were chemically analyzed. The mean concentrations of nss-S $O_4$$^{2-}$, N $H_4$$^{+}$, and N $O_3$$^{[-10]}$ showed high values, which were 6.73, 1.45, and 1.45 ${\mu}{\textrm}{m}$/㎥, respectively, while $Ca^{2+}$ and $K^{+}$ concentrations were low with the values of 0.49 and 0.42 $\mu\textrm{g}$/㎥. The concentrations of most components increased in spring but decreased in summer, especially with the remarkable increase of $Ca^{2+}$ and N $O_3$$^{[-10]}$ concentrations in spring. The seasonal comparison of nss-S $O_4$$^{2-}$ concentrations showed higher values with the order of spring > fall 〉 winter〉 summer, but spring 〉 winter〉 fall 〉 summer for N $O_3$$^{[-10]}$ Meanwhile, the concentration levels of N $a^{+}$ and C $l^{[-10]}$ increased more in winter season. According to the investigation of wind direction effect, the concentrations of most aerosol ionic components showed higher values consistently at the westerly and northerly wind conditions. Based on the factor analysis, the atmospheric aerosols in the Gosan Site are considered to be largely affected by marine sources, followed by anthropogenic and soil sources.urces..

Long-term Variation of Ionic Constituent Concentrations in TSP at Jeju Island (제주지역 TSP 이온성분 농도의 장기 변화)

  • Ko, Hee-Jung;Kang, Chang-Hee;Kim, Won-Hyung;Lee, Soon-Bong;Kang, Hwa-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.420-431
    • /
    • 2010
  • The water-soluble components have been analyzed from the total suspended particulate (TSP) collected at Gosan site of Jeju Island for ten years (1997~2006), and the long-term variations of ionic constituent concentrations have been investigated in order to understand the pollution characteristics of atmospheric aerosols. Their mean concentrations were in the order of nss-${SO_4}^{2-}$ > $Na^+$ > ${NO_3}^-$ > $Cl^$ > ${NH_4}^+$ > nss-$Ca^{2+}$ > $K^+$ > $Mg^{2+}$. The ${NO_3}^-$ concentrations had increased somewhat smoothly compared to those of ${SO_4}^{2-}$ for the past 10 years, possibly indicating the recent energy consumption pattern changes in China. The concentrations of ionic aerosol components showed mostly higher values during the Asian Dust storm periods, and the concentration ratios of nss-$Ca^{2+}$, ${NO_3}^-$, and nss-${SO_4}^{2-}$ between the Asian Dust and Non-Asian Dust periods were 6.9, 2.4, and 1.3, respectively. The anthropogenic nss-${SO_4}^{2-}$, ${NO_3}^-$, ${NH_4}^+$ and the soil originated nss-$Ca^{2+}$ components showed high concentrations as the air parcels were moved from the Asia continent, on the other hand, their concentrations were relatively low as moving from the Northern Pacific into the Gosan area.

Fabrication and Sensing Properties of NASICON Thick Film SO2 Gas Sensor Using Screen-print Method (스크린 인쇄법을 이용한 NASICON 후막 SO2가스 센서의 제조 및 특성)

  • Bae, J.C.;Lee, S.T.;Jun, H.K.;Bang, Y.I.;Lee, D.D.;Huh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.115-119
    • /
    • 2003
  • The thick film type sensor having Pt/Na Super Ionic Conductor(NASICON) solid electrolyte/Pt/$Na_2$$SO_4$/Pt catalyst system for $SO_2$gas was fabricated by screen-print method. The phase of Na Super Ionic Conductor solid electrolyte sintered at different temperature of 1050, 1150,$ 1250^{\circ}C$ and for different time of 1.5, 2.5, 3.5 hr were investigated by XRD. The Electromotive Force variation of the sensor with $SO_2$concentrations and operating temperatures were investigated. The major phase of Na Super Ionic Conductor film sintered at 115$0^{\circ}C$ for 3.5 hr was sodium zirconium silicon phosphate($Na_3$Zr$_2$$Si_2$PO$_{12}$). The Nernst's slope of Na Super Ionic Conductor sensor for $SO_2$gas with the variation of concentration from 10 to 100 ppm was 167.14 ㎷/decade at the operating temperature of $500 ^{\circ}C$. The increase of oxygen partial pressure was not affected to the variation of Nernst's slope.e.

Hydroxide ion Conduction Mechanism in Mg-Al CO32- Layered Double Hydroxide

  • Kubo, Daiju;Tadanaga, Kiyoharu;Hayashi, Akitoshi;Tatsumisago, Masahiro
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.230-236
    • /
    • 2021
  • Ionic conduction mechanism of Mg-Al layered double hydroxides (LDHs) intercalated with CO32- (Mg-Al CO32- LDH) was studied. The electromotive force for the water vapor concentration cell using Mg-Al CO32- LDH as electrolyte showed water vapor partial pressure dependence and obeyed the Nernst equation, indicating that the hydroxide ion transport number of Mg-Al CO32- LDH is almost unity. The ionic conductivity of Mg(OH)2, MgCO3 and Al2(CO3)3 was also examined. Only Al2(CO3)3 showed high hydroxide ion conductivity of the order of 10-4 S cm-1 under 80% relative humidity, suggesting that Al2(CO3)3 is an ion conducting material and related to the generation of carrier by interaction with water. To discuss the ionic conduction mechanism, Mg-Al CO32- LDH having deuterium water as interlayer water (Mg-Al CO32- LDH(D2O)) was prepared. After the adsorbed water molecules on the surface of Mg-Al CO32- LDH(D2O) were removed by drying, DC polarization test for dried Mg-Al CO32- LDH(D2O) was examined. The absorbance attributed to O-D-stretching band for Mg-Al CO32- LDH(D2O) powder at around the positively charged electrode is larger than that before polarization, indicating that the interlayer in Mg-Al CO32- LDH is a hydroxide ion conduction channel.

Effect of salt on membrane protein Caveolin3 proved with NMR spectroscopy

  • Byoungduck Park;Ji-Hun Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.3
    • /
    • pp.10-14
    • /
    • 2024
  • Caveolin3, mainly expressed in muscle tissue types, is a structural scaffolding protein of caveolae which are microdomains of plasma membrane. To elucidate the relationship between structure and function, several studies on the structure of caveolins using NMR have been reported. Because the ionic strength can affect the electrostatic-driven association of proteins with ligand and protein structure, the effect of salt in the structural studies has to be considered. In this work, we observed that the chemical shifts of Cav3 in the LPPG detergent change depending on salt concentration. The R2 values also show salt concentration-dependent changes. Specifically, in the N-terminal region where conformational changes and various interactions occur, the R2 values decrease. Interestingly, the R2 values of residues expected to be located in the LPPG detergent are also influenced by the salt concentration. This work suggests that the concentration of NaCl can affect interpretation of NMR data from membrane proteins.

Pollution Characteristics of PM2.5 Observed during Winter and Summer in Baengryeongdo and Seoul (겨울 및 여름철 백령도와 서울에서 측정한 PM2.5 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Park, Jong Sung;Park, Seung Myeong;Song, In Ho;Oh, Jun;Shin, Hye Jung;Lee, Min Do;Lim, Hyung Bae;Kim, Hyun Woong;Choi, Jin Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.38-55
    • /
    • 2018
  • Hourly measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), and water-soluble ionic species were made at the air quality intensive monitoring stations in Baengryeongdo (BR) and Seoul (SL) during the winter (December 01~31, 2013) and summer (July 10~23, 2014) periods, to investigate the increase of $PM_{2.5}$ and secondary ionic species and the reasons leading to their increase during the two seasons. During winter, $PM_{2.5}$ and its major chemical species concentrations were higher at SL than at BR. Contribution of organic mass to $PM_{2.5}$ was approximately 1.7 times higher at BR than at SL, but the $NO_3{^-}$ contribution was two times higher at SL. Total concentration of secondary ionic species ($SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$) at BR and SL sites accounted for 29.1 and 40.1% of $PM_{2.5}$, respectively. However, during summer, no significant difference in chemical composition of $PM_{2.5}$ was found between the two sites with the exception of $SO{_4}^{2-}$. Total concentration of the secondary ionic species constituted on average 43.9% of $PM_{2.5}$ at BR and 53.0% at SL. A noticeable difference in chemical composition between the two sites during summer was attributed to $SO{_4}^{2-}$, with approximately twofold concentration and 10% higher contribution in SL. Low wind speed and high relative humidity were important factors in secondary formation of water-soluble ionic species during winter at SL, resulting in $PM_{2.5}$ increase. While the secondary formation during summer was attributed to strong photochemical processes in daytime and high relative humidity in nighttime hours. The increase of $PM_{2.5}$ and its secondary ionic species during the winter haze pollution period at SL was mainly caused either by long-range transport (LTP) from the eastern Chinese regions, or by local pollution. However, the increased $SO{_4}^{2-}$ and $NO_3{^-}$ during summer at SL were mainly caused by LTP, photochemical processes in daytime hours, and heterogeneous processes in nighttime hours.

Voltage-Dependent Ionic Currents and Their Regulation by GTP and Phorbol Ester in the Unfertilized Eggs of Mouse and Hamster

  • Kim, Ik-Hyun;Kim, Yang-Mi;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.93-105
    • /
    • 1993
  • The present study was performed to investigate the properties of ionic currents elicited by voltage pulses in the unfertilized eggs of mouse and hamster by using the whole cell voltage clamp techniques and to find out if there are any differences in properties between eggs of the two rodents. In addition, the modulatory effect of G proteins and protein kinase C (PKC) on the ionic channels were observed. The inward current in hamster eggs was shown to be due to $Ca^{2+}\;current\;(i_{ca})$). The current voltage relations of these currents in hamster egg were analogous to those in mouse eggs. The amplitude of $i_{ca}$ in the hamster egg was larger than that in the mouse egg ($-3.12{\pm}1.07\;nA\;vs.\;-1.71{\pm}0.71\;nA,\;mean{\pm}\;SD$). These results suggest that the $Ca^{2+}$ channels in both kinds of eggs have similar channel properties but their density, and/or conduct ance per unit area is higher in hamster eggs than in mouse eggs. Outward currents in eggs of both mouse and hamster were carried by $K^+$. In hamster eggs, they appeared to comprise at least two components; a transient outward component ($i_{to}$) and a steady state component ($i_{\infty}.$ The $i_{to}$ was found to be dependent on intracellular $Ca^{2+}$ concentration; whereas on the other hand $i_{\infty}\;was\;Ca^{2+}$-independent. $Ca^{2+}$ currents were increased in eggs treated with GTP (or $GTP{\gamma}S$) or fluoroaluminate ($AIF_4^-$). In the hamster egg these increments were antagonized by GDP (or $GDP{\beta}S$) application. In contrast to the enhancement of $i_{ca},\;i_k$ was reduced following GTP (or $GTP{\gamma}S$) perfusion in mouse eggs. The transient component ($i_{to}$) in hamster eggs was increased by adding GTP but decreased by phorbol ester, TPA or dioctanoyl glycerol (DOG). Simultaneous application of $GTP{\gamma}S$ and DOG suppressed $i_{to}$ more effectively than a single application or DOG or TPA. From the above results, we have shown that ionic currents elicited by voltage pulses existed in the unfertilized eggs of mouse and hamster. There are at least two types of currents, $i_{ca}\;and\;i_k$ in mouse eggs, while three types, $i_{ca},\;Ca^{2+}$-dependent $i_k$ and $Ca^{2+}$-independent $i_k$ exist in hamster eggs. ionic channels in these eggs may be regulated either directly by GTP and PKC or indirectly by the substances linked with GTP and PKC.

  • PDF

Hydrophilization of hydrophobic membrane surfaces for the enhancement of water flux via adsorption of water-soluble polymers

  • Kim, Ka Young;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.101-113
    • /
    • 2016
  • In this study, to improve the water flux of porous hydrophobic membranes, various water-soluble polymers including neutral, cationic and anionic polymers were adsorbed using 'salting-out' method. The adsorbed hydrophobic membrane surfaces were characterized mainly via the measurements of contact angles and scanning electron microscopy (SEM) images. To enhance the durability of the modified membranes, the water-soluble polymers such poly(vinyl alcohol) (PVA) were crosslinked with glutaraldehyde (GA) and found to be resistant for more than 2 months in vigorously stirred water. The water flux was much more increased when the ionic polymers used as the coating materials rather than the neutral polymer and in this case, about 70% of $0.31L/m^2{\cdot}h$ (LMH) to 0.50 LMH was increased when 300 mg/L of polyacrylamide (PAAm) was used as the coating agents. Among the cationic coating polymers such as poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA), poly(acrylic acid-comaleic acid) (PAM) and poly(acrylic acid) (PAA), PSSA_MA was found to be the best in terms of contact angle and water flux. In the case of PSSA_MA, the water flux was enhanced about 80%. The low concentration of the coating solution was better to hydrophilize while the high concentration inclined to block the pores on the membrane surfaces. The best coating condition was found: (1) coating concentration 150 to 300 mg/L, (2) ionic strength 0.15, (3) coating time 20 min.

Study on Metal Cupferrate Complex (Part III) Study on Distribution Ratio of Hydrogen Cupferrate in $H_2O-CHCl_3$ System (Metal Cupferrate Complex 에 關한 硏究 (第 3 報) $H_2O$-Chloroform 系에서의 Hydrogen Cupferrate 의 分配係數에 關한 硏究)

  • Si-Joong Kim;Doo-Soon Shin
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.283-287
    • /
    • 1963
  • The distribution ratio of hydrogen cupferrate in $H_2O-CHCl_3$ system was considered as a function of pH ($HClO_4$), ionic strength ($NaClO_4$), and cupferron concentration in perchloric acid media, respectively. The values were independent upon pH (1.50∼3.00 range) and ionic strength (0.1∼2.00 range), but they increased as increasing the cupferron concentration in the acidic media. At the infinite dilution, the thermodynamic distribution ratio between chloroform and aqueous phase was 120. 0. The activity coefficients of hydrogen cupferrate in chloroform solution were determined by the distribution ratio. This activity coefficient may be calculated by using the empirical equation, $-log\;f_{CHCl3}=0.1285C_{CHCl3}+{7.775C^2}_{CHCl3}$ which represents the experimental data quite well for the solution in 0.1 mole/l order of hydrogen cupferrate concentration.

  • PDF

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.