• 제목/요약/키워드: ion transport equation

검색결과 34건 처리시간 0.021초

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Tanaka, Yoshinobu;Uchino, Hazime;Murakami, Masayoshi
    • Membrane and Water Treatment
    • /
    • 제3권1호
    • /
    • pp.63-76
    • /
    • 2012
  • Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

산업폐수중 유화액막에 의한 크롬(VI)의 분리 (Separation of Chromium(VI) Ion in Industrial Waste Water throunh Liquid Surfactant Membrane)

  • 초민승;강안수;우인성;이영순
    • 한국안전학회지
    • /
    • 제4권1호
    • /
    • pp.15-24
    • /
    • 1989
  • The transport of Chromium(Vl) ion from waste water throughl the liquid surfactant membrane containing tri-n-octylamine as a carrier, was analyzed by a slab model and was investigated through experiments. For the experiment of membrane stability, concentrations of surfactant and liquid parafnn oil were analyzed. Extraction euperiments were carried out to observe the effect of system variables, such as stirring speed, concentration of carrier, and NaOH in internal aqueous phase, and concentrations of H$_2$SO$_4$and initial chromium(VI) ion in external aqueous phase at $25^{\circ}C$. It is concluded that the most stable formation of liquid membrane emulsion was obtained when surfactant concentration is above 3 wt. % and liquid parafnn oil concentration is 50 vol. %. The transport of chromium(VI) ion in bacth extractor increased with increasing carrier concentration, the volume ratio of emulsion to external aqueous phases, and initial concentration of chromium(VI) ion under the optimum stirring speed of chromium(VI) ion below 2 ppm. The theoretical equation on the transport of chromium(Vl) ion agreed well with the experimental results.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Coupled diffusion of multi-component chemicals in non-saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Xi, Yunping
    • Computers and Concrete
    • /
    • 제11권3호
    • /
    • pp.201-222
    • /
    • 2013
  • A comprehensive simulation model for the transport process of fully coupled moisture and multi-species in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick's law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.

A Numerical Solution of Transport of Mono- and Tri-valent Cations during Steady Water Flow in a Binary Exchange System

  • Ro, Hee-Myong;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제43권1호
    • /
    • pp.18-24
    • /
    • 2000
  • A one-dimensional transport of displacing monovalent ion, $A^+$, and a trivalent ion being displaced, $B^{3+}^ in a porous exchange system such as soil was approximated using the Crank-Nicolson implicit finite difference technique and the Thomas algorithm in tandem. The variations in the concentration profile were investigated by varying the ion-exchange equilibrium constant (k) of ion-exchange reactions, the influent concentrations, and the cation exchange capacity (CEC) of the exchanger, under constant flux condition of pore water and dispersion coefficient. A higher value of k resulted in a greater removal of the native ion, behind the sharper advancing front of displacing ion, while the magnitude of the penetration distance of $A^+$ was not great. As the CEC increased, the equivalent fraction of $B^{3+}^ initially in the soil was greater, thus indicating that a higher CEC adsorbed trivalent cations preferentially over monovalent ions. Mass balance error from simulation results was less than 1%, indicating this model accounted for instantaneous charge balance fairly well.

  • PDF

마크로고리 화합물을 운반체로 하는 액체막을 통한 이온의 운반에 관한 연구 (제2보). 유기액체막 운반체를 통한 수소이온의 운반 (The Ion Transport Phenomena through the Liquid Membrane with Macrocylic Compound (II). Transport of $H^+$Ion through Organic Liquid Membranes Containing Dibenzo-18-crown-6 and Dicyclohexyl-18-crown-6 as Carrier)

  • 윤창주;이심성;김영희;김시중
    • 대한화학회지
    • /
    • 제28권3호
    • /
    • pp.170-175
    • /
    • 1984
  • Dibenzo-18-crown-6(DBC) 및 dicyclohexyl-18-crown-6(DCC)를 이온의 운반체로 하는 여러 유기액체막을 통해 수소이온의 운반속도를 25$^{\circ}$C에서 측정하였다. 운반속도는 용매의 유전상수에 크게 영향을 받는데 이를 액체막 내부에서 이온 화학종이 가진 Born의 포텐셜 에너지 장벽을 들어 고찰하였다. 또한 음이온의 크기도 운반속도에 영향을 주었는데 이는 Born식으로 부터 새로이 유도된 이론적인 결과와 잘 일치하였다.

  • PDF

Electrical Quadruple Layer under the AC Electric Field

  • Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.167-176
    • /
    • 2006
  • In this paper we show that solutions of the nonlinear Nernst-Planck equation possesses the quadruple-layer structure near the interface when the electrolyte receives a high frequency forcing such as a high-frequency alternating current. Very near to the interface wall, the well-known, classical Stern layer exists. Near to the Stern layer we have the secondly thin layer (to be called inner layer in this paper) where the ion concentrations behave under the same frequency as the external forcing. However, in this layer, the positive and negative ion concentrations develop with the time phase 180-degree different from each other. Next to this second layer, we have the third layer (called middle layer) in which two ion concentrations change with the time period double the forcing, and both concentrations behave in the same time phase. In the outermost layer, i.e. the forth layer, (called outer layer) the ion concentrations show the same-phase development as the third one but decaying very slowly in time. Our assertion is mostly based on the 1-D numerical simulation for the Nernst-Planck equation under a high frequency AC field assuming that the quadruple layer is very thin compared with the length scale representative of the bulk region.

  • PDF

유체법을 이용한 코로나 방전의 1차원 수치해석 (1-Dimensional Simulation of the Corona Discharge using Fluid Method)

  • 이용신;심재학;고광철;강형부
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.172-176
    • /
    • 1997
  • It is likely that the corona discharge appears due to the motion and the multiplication of electron and ion under the nonuniform electric field. Because the motion and the multiplication of electron and ion are the function of electric field, for the simulation of the corona discharge, we have to calculate the electric field, before the calculation of the motion and the multiplication of electron and ion. In this paper, the electric field is calculated on the assumption that the gap between a hyperboloidal needle and a plane is 1-dimension, and the motion and the multiplication of electron and ion are determined by Flux-Corrected Transport method. For this purpose, we solve the electron and ion continuity equation together with Poisson equation. We calculated the current density and the electron and ion density distributions between electrodes as well as electric field distortion due to the space charge assuming that the discharge channel radius is 100${\mu}{\textrm}{m}$. In this simulation, it is found that the current density has one peak as observed by experiment, and electric field distortion is important to the formation and the stability of the corona discharge.

  • PDF

운반체 함침 유화액막에 의한 폐수중 크롬(VI)의 이동속도 (Tansport Rate of Chromium ion from Waste Water through the Liquid Surfactant Membrane Containing Carrier)

  • 우인성;김경호;이상진;강안수;최세영
    • Elastomers and Composites
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 1988
  • The transport of chromium(VI) ion from waste water through the liquid surfactant membrane containing tri-n-octylamine as a carrier, was analyzed by a slab model and was investigated through experiments. For the experiment of membrane stability, concentrations of surfactant and liquid paraffin oil were analyzed. Extraction experiments were carried out to observe the effect of system variables, such as concentrations of carrier, and initial chromium(VI) ion in external aqueous phase at $25^{\circ}C$. It is concluded that the most stable formation of liquid membrane emulsion was obtained when surfactant concentration is above 3 wt.% and liquid paraffin oil concentration is 50 vol.%. The theoretical equation on the transport of chromium(VI) ion agreed well with the experimental results.

  • PDF

고분자전해질 연료전지에서 고분자막을 통한 물의 이동 (Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells)

  • 이대웅;황병찬;임대현;정회범;유승을;구영모;박권필
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.338-343
    • /
    • 2019
  • 고분자전해질 연료전지에서 전해질막의 물이동과 함수율은 고분자막의 성능에 많은 영향을 미친다. 본 연구에서는 간단한 방법에 의해 물이동에 관한 고분자막의 물성(전기삼투계수, 물 확산계수)을 측정하고 이들을 이용해 막을 통한 물의 이동량과 이온전도도를 모델식에 의해 모사한 후 실험값과 비교하였다. 물이동의 구동력은 전기삼투와 확산만이 라고 본 1차원 정상상태 지배방정식을 매트랩으로 수치해석하였다. $144{\mu}m$ 두께의 고분자막의 전기삼투계수를 수소펌핑셀에서 구한 결과 1.11을 얻었다. 물확산계수를 상대습도의 함수로 나타냈고 물확산에 대한 활성화에너지는 $2,889kJ/mol{\cdot}K$였다. 이들 계수를 적용해 모사한 물이동량과 이온전도도 결과는 실험값과 잘 일치함을 보였다.